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Flocking, herding, schooling and self-organization

• Self-organized systems arise very naturally in artificial
intelligence, and in physical, biological and social sciences.

• Such systems seem to have remarkable capability to regulate
the flow of information from distinct and independent
components to achieve a prescribed performance.

• It is of particular interest, in both theories and applications, to
understand how self-propelled individuals use only limited
environmental information and simple rules to organize into
an ordered motion.

• These emerging behaviours such as flocking, herding, and
schooling have been observed in many self-organized systems,
including fish swimming in schools, birds flying in flocks for
the purpose of enhancing the foraging success, and the flight
guidance in honeybee swarms.



The Cucker-Smale Model
Cucker F. and Smale S., On the mathematics of emergence. Japan
J. Math. 2 (2007),197-227.
Consider a self-organized group with N agents, with each agent i
being characterized by its position xi ∈ Rd , and velocity vi ∈ Rd .
The Cucker-Smale model:

dxi
dt

= vi ,
dvi
dt

=
α

N

N∑
j 6=i

aij(x)(vj − vi ), (1)

where α measures the interaction strength.

• The influence function: aCSij (x) = I (|xi − xj |) is used to
quantify the pairwise influence of agent j on the alignment of
agent i , as a function of the (metric) distance.

• This influence function I is a strictly positive monotonically
decreasing function;

• A prototype given by I (r) = (1 + r2)−β for r ≥ 0, where β is
a constant.



Motsch-Tadmor Non-symmetric Model

dxi
dt

= vi ,
dvi
dt

=
α

N

N∑
j 6=i

aij(x)(vj − vi ),

Motsch S., Tadmor E., A New Model for Self-organized Dynamics
and Its Flocking Behavior, J Stat Phys 144(2011), 923-947.
A non-symmetric pairwise influence function

aMT
ij (x) =

I (|xi − xj |)∑N
k=1 I (|xi − xk |)

(2)

is used to emphasize the importance of relative influence.



Acceleration of Flocking
• An agent may receive influence from multiple agents in a

specific group, and an agent may also receive influence from
another agent indirectly via other agents. [For example, in the
bee swarms, only a small minority of informed bees manage to
provide guidance to the rest but the entire swarm is able to fly
to the new nest intact]

• We suggest that the pairwise influence aij may take more
general form as follows

aij(x) =
N−1∑
k=0

δkij (x),

where δkij (x(t)) is defined inductively as follows:

δ0ij(x(t)) = aCMij (x(t)) or aMT
ij (x(t)),

δkij (x(t)) =
∑
l 6=i ,j

max{δk−1il (x(t))− δk−1lj (x(t)), 0},

where the matrix (δ0ij) givens the pairwise influence of each

agent with δ0ij(x(t)) representing the direct impact from j to i .



Acceleration of Flocking: aij(x) =
∑N−1

k=0 δk
ij (x)

δkij (x(t)) is defined inductively as follows:

δ0ij(x(t)) = aCMij (x(t)) or aMT
ij (x(t)),

δkij (x(t)) =
∑
l 6=i ,j

max{δk−1il (x(t))− δk−1lj (x(t)), 0},

• δ0ij(x(t)) represents the direct impact from j to i ;

• δ1ij(x(t)) represents the impact via an intermediate agent.

• Similarly, δkij (x(t)) denotes the impact from agent i to agent j
via k intermediate agents.

• In particular, in the case where k = 1, we have

aij(x(t)) = δ0ij(x(t)) + δ1ij(x(t))

= φij(x(t)|) +
∑
l 6=i ,j

max{φil(x(t))− φlj(x(t)), 0}.

• This further increases the acceleration of agent i using the
difference of velocities between agent i and agent j should
agent j is further away from agent i than other intermediate
agents.



Delayed Cucker-Smale Model: motivation

• We are interested in a more general setting by incorporating
delay arguments in the pairwise influence due to the finite
speed in processing the influence.

• This addition of time lags seem to be very natural for most
self-organized systems, and we will show that these time lags
will not change the unconditional flocking property
qualitatively, but alter the flocking velocity in a nonlinear way.

• In general, the influence of agents on each other is realized in
various fashions including smell, sound and vision. For
examples, the influence among honey bees is transferred
mainly by a certain chemical material, while the influence
among geese is mainly made through vision. As such, the
influence of an agent on another is naturally transferred with
a finite speed.

• We will focus on the case of processing the information about
the location and velocity of neighbouring agents.



Delayed Cucker-Smale Model

dxi
dt

= vi ,
dvi
dt

= α

N∑
j 6=i

aij(x(t − τij))(vj(t − τij)− vi (t)), (3)

where τij denotes the communication time between agents i and j .

• In general, the time delay τij is non-symmetric so that
τij 6= τji . In what follows, we assume also τii = 0 for all i .

• To specify a solution for the self-organized system (3), we
need to specify the initial conditions

xi (θ) = fi (θ), vi (θ) = gi (θ) for θ ∈ [−τ, 0], (4)

where f and g are given continuous vector-value functions,
τ = maxi ,j{τi ,j}.

• It will be shown that the flocking velocity will depend not only
on the size of the time lags, but also the variation of the
agent positions at the initial time intervals.



Flocking solutions

Let dX and dV denote the diameters in position and velocity
spaces, namely,

dX (x) = max
i ,j
{|xj − xi |}, dV (v) = max

i ,j
{|vj − vi |}.

A solution {xi (t), vi (t)}Ni=1 of system (3) subject to the initial
condition (4) is called a flocking solution if it converges to a flock
in the sense that

sup
t≥0

dX (x(t)) < +∞ and lim
t→+∞

dV (v(t)) = 0.



Flocking solution candidates

The key in our fixed-point theoretic argument to establish
sufficient conditions for unconditional flocking is to identify
candidate flocking solutions of the self-organized system by
imposing constraints on the bound, decaying rates at infinite, and
variation at maximum delay interval of the flocking velocity.

We define the following set (3) and define the following set

E = {(x, v) : x = {xi}Ni=1, v = {vi}Ni=1, xi , vi ∈ C ([−τ,+∞),Rd);

xi (s) = fi (s), vi (s) = gi (s) for s ∈ [−τ, 0];

sup
t≥0,i ,j

|xi (t)− xj(t)| < +∞;

sup
t≥0,i
|vi (t)| ≤ sup

i
|gi (0)|eτ ;

sup
θ∈[0,τ ],t≥0,i ,j

e
α
2
t |vi (t)− vj(t + θ)| < +∞}.



Unconditional Flocking

(LipInf) There exists a constant L such that, for all x, y ∈ RdN and all
1 ≤ i , j ≤ N, we have

|aij(x)− aij(y)| ≤ L|x− y|.

With this assumption, we can introduce the constant

c = (α + 1)N(L sup
i
|gi (0)|eτ + 1) + 1,

and define a metric D on the the set E by

D((x, v), (p,q)) = sup
t≥0
{e−ct max{|x(t)− p(t)|, |v(t)− q(t)|}},

for (x, v), (p,q) ∈ RdN × RdN . (E ,D) is a complete metric space.
Theorem: If the global Lipschitz condition condition (LipInf)
holds, then the self-organized system (3) with the initial value (4)
has a unique flocking solution {xi (t), vi (t)}Ni=1 in E .



Unconditional Flocking: Idea of the Proof
By using the variation-of-constants formula, we see that the
solution of system (3) with the initial value (4) can be translated
as a fixed point of operator T : RdN ×Rdm → RdN ×Rdm given by

T

(
x
v

)
=

(
Φ(x, v)
Ψ(x, v)

)
, for (x, v) ∈ E ,

where Φ(x, v) = (φ1, φ2, · · · , φN)T ,Ψ(x, v) = (ψ1, ψ2, · · · , ψN)T ,

φi (x, v)(t) = α−1(1− e−αt)gi (0) + fi (0)

+

∫ t

0
(1− e−α(t−s))

N∑
j=1

aijvj(s − τij)ds

and

ψi (x, v)(t) = e−αtgi (0) + α

∫ t

0
e−α(t−s)

N∑
j=1

aijvj(s − τij)ds

for t ≥ 0.



Corollaries

Corollary If aij(x) =
I (|xi−xj |)∑N

k=1 I (|xi−xk |)
and I (r) = (1 + r2)−β for r ≥ 0

and β > 0, then the self-organized system (3) with initial value (4)
has a unique flocking solution for all β > 0.

Remark: The case of aij(x) =
I (|xi−xj |)∑N

k=1 I (|xi−xk |)
without delay was

considered by Motsch and Tadmor, and it was concluded that the
model has a flocking solution if

∫ +∞
φ2(r)dr = +∞ holds. This,

for the influence function φ(r) = (1 + r2)−β, requires that
β ∈ (0, 14 ]. Our result shows that unconditioning flocking is
guaranteed for the general Cucker-Smale model even with delay for
all β > 0.



Asymptotic flocking velocity and delayed impact
Theorem: Assume the condition (LipInf) holds and
{(xi (t), vi (t))}Ni=1. Then

lim
t→+∞

vi (t) =
gi (0) + αwi

1 + ατi
+

α

1 + ατi
[fi (0)− fi (−τi )] ≡ v∞,

where v∞ given above is independent of i , τi = maxj{τij} and

wi = lim
t→∞

∫ t

0

N∑
j=1

aij(x(s − τij))(vj(s − τij)− vi (s − τi ))ds.

Corollary: If aij = aji and τij = τ for all i , j , then

v∞ =

∑N
i=1 gi (0)

N(1 + ατ)
+

α

N(1 + ατ)

N∑
i=1

[fi (0)− fi (−τ)].

Remark We give a positive answer to the problem posed by
Motsch and Tadmor. We also note that the time delay and the
variation of the initial position during the delay interval may
impact on the final flocking velocity.


