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Laplacian Eigenfunctions

Let u be an eigenfunctions on smooth, compact, boundryless
Riemannian manifold (M, g)

Au = \u
What are the LP growth properties of u

Suppose M = T? how can be include algebraic information into
analytic estimates?
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Quantum mechanics

Eigenfunctions arise as stationary state of the Schrodinger equation

10
(iat - A) P(t,x) =0
U(t,x) = eEu

Au=E

A2 = E physically is interpreted as energy of the system. Want to
study the high energy limit A — oo



Spectral Clusters

Due to the uncertainty principle it is difficult to study one
eigenfunction directly. We study norms of spectral clusters on
windows of width w

Ex= Y. K

NENA—w,A+w]
E; projection onto \; eigenspace.
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Obviously include eigenfunctions but also can include sums of
eigenfunctions if w is large enough. The smaller the window size
the closer cluster estimates become to true eigenfunction estimates.




Quasimodes

In the semiclassical setting we study approximate eigenfunctions or
quasimodes
(h?A —1)u = hwf

where ||f] 2 = O(1), same as studying width w windows

(A=X) > gu= > g+ Ny

NEA—w,A+w] NEN—w,A+w]

Divide by A\ = h—2

> gt A"ig "y = 021 w) = Op(hw)

A EA—w,A+w]

So
Width w clusters — Quasimodes of order hw



Laplacian Eigenfunctions as Stationary States

We work in semiclassical setting with h = A™1
(hDy — R*A)(t,x) =0

¥(t,x) = ehu(x)

(A —-1)u=0

Use this formulation to express eigenfunction as a time average.
Quasimodes of order hw

(h?A —1)u = hwf(x)

(hDy — W2A)u = hwe' f(x)



Invariance under propagation

Use the propagator U(t) = eth&

(hD; — R2A)U(t) = 0
U(0) = Id

We write

Wt x) = ehu(x) = P u(x) + E /t "= he ' £(x)]ds
h Jo

it - it t . is
u(x) = e+ B u(x) + we / (=A% ()] ds
0

Can average this over times up to order 1/w.



Propagation times

@ Averaging over short times has the benefit of keeping the
analysis local however we are then unable to tell the difference
between good and bad quasimodes

@ Longer time averages will differentiate between quasimodes
however loss of locality
For w =1 Sogge
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Sharp on the sphere



Toral Eigenfunctions

Special case when M = T? = R? /2772

Eigenfunctions are the plane waves e/*¥*. Periodicity requires that
Aki and Akp are integers. So multiplicity is equal to the number
intersections of the circle of radius A and the integer lattice.

A ~N This is known to be C.A®.
So trivially we have better
estimates for T2. Are LP

\, norms ever bounded?
\ / Zygmund

Juls <544 ul 2




eithA

on the Torus

Will develop U(t) = e™2%2 in the form

U(t)u = / &(t,x, y)u(y)dy

Then let T be the set of translations
U(t)u = Z/é(t,x,w)U(y)dy
el

Will find that this sum is finite as &(t, x,yy) is supported when
d(x,vy) < 1/w.



ithARz

The propagator e

We want to solve the evolution equation

(hD; — A)U(t) =0
U(0) = Id

Seek a solution of the form

Ueyu = [ a(tx.y)uly)dy

e(txy) =2 [ b a(x, )t



This is easy to solve can check that
8(t,x,y) = 2 / en( Sy g

is a solution

hD:&(t,x,y) = h2]§\2/eﬂ(<x%€>+t£-§)d§

hDy&(t,&,y) = h~ 25,/eh XY ESFIEE) e

so
(hD; — h*D)&(t, x,y) =0

and '
80, x,y) = hz/e;'<xy’5>d§



Choosing quasimode order

We want to choose a w so that we get no pollution from
eigenfunctions with similar eigenvalue

Toral eigenfunctions e’*** where Ak is a integer lattice point.
Therefore A2 € Z.

=1 A’ A +1

A £ w)? =22+ w4+ w?

1

Need to choose w = A™* or in semiclassical notation w = h



Quasimodes on the torus

We will assume we are working with an order h?> quasimode
(equivalent to w = h). We can propagate for times up to h~!

it it t : is
u(x)=h / X(ht)e—’he'thu(x)dt+h2/X(ht)e—h / e/ (t=5)hA o £ (x)] dsdlt
0
where x(t) is supported in € < t < 2¢e. Focus on first term

h/x(ht)e—’ﬁe’thAudt: hz/e‘iffé(t,x,w)x(ht)U(y)dtd&dy

yer

Will use stationary phase to simplify
/ e n&(t, x, vy)x(ht)u(y)dtd¢dy

for each ~



/ e~ 1 8(t, x, 7y)x(ht)dtd¢ = h™2 / eh(SXTWESHEED \ (ht) dede
Stationary phase in (t,¢)
ge=1
X =y =2t
/e n8(t, x, vy)x(ht)u(y)dtdedy = h—1/2/ef’;'X‘”’y'a(x,y)u(y)dy

where a(x, y) is supported eh™! < |x — y| < 2eh™!

_hl/ZZ/e”X Wa(x, vy)u(y)dy

yelr
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Directional localization

We write
u(x) = Tu

Tu= 1125 [ et lae,1y)u(y)dy

vyer

Definition
Let £ € S and ¢ : R? = R* a smooth cut off function supported
in |n| <2. Let T¢ be given by

Teu=h72%" /e“xw'a(xaw)é (,17 ( e e 5)) u(y)dy

= [x =yl

We say T is the component of T localized in direction ¢




Algebraic to analytic

Consider .
Tgezk'x
where € — k| > h1—¢

w2 [t kst e <,17 (X — 5)) dy

poerd x =yl

Integrate by parts to pick up

-1
X ="y K

x =yl
each time. Contribution is Oy(h"¢). These terms can be removed

T = Z Te,

lattice points &k

h

Now we have recovered the correct L2 — L norm. What about
other values of p.



Long overlapping tubes. Want to know what happens in an O(1)
region. Place a cut off there

<>

1/h

No longer have a h?® quasimode. Cut off makes it order h
quasimode. So propagate for O(1) time



Flowing for O(1) time we have
u(x) = Tlu
Thu=nt [ el atey)uly)dy

with a(x, y) supported in € < |x — y| < 2e. First split T! into K
directions

Tglu —h2 /e“xya(X,y)C <K <|i:§| —f>> u(y)dy

K
=T
i=1
Will study

W ST

Jj=1



K N
1\WN _ 1
v T = > 1 Tew
i=j [, gn] i=1
Most terms in the sum include approximately K distinct directions
repeated equally. Will show that there is an improvement for
spatially spread out terms. Let

TUl,'" Jn] uN = H( Té»l. u)(x;)

Symmeterize

sym 1
TUi'"JN]V(Xl’”' ) = (N1)2 Z H(Tflfa(i) V)b))

o,meSy i=1

where Sy is the symmetric group of order N



We denote a point X € R?N as X = (xq,...,xy). In this notation

T V00 = [ KX YM(Y)aY
where

1 0'71—
Kjl,-'-,j/v](X7 Y)= (N1)2 Z [, JN](X’ Y)

o,mESN

Elrljr JN] HKE 7r() , Yi)

K o) = i aty)e (1 (2226 )



Fix 7 consider

Z K JN] Y)

ocE€SN

X X
_—
X .
gJz §13
X
ﬁ.
S, .

only get overlap if all &y are the same



How many overlaps can we have?

<

<

Each block can have (N/K)! permutations
within it. There are K blocks so

(N/K)DS = (N/K)"

Compare with one N! term to get an
improvement of (1/K"). Since there are K
ways of creating this kind of product this
cancels out but gives the correct L* estimate,
we still have one copy of (N!) left.



Look at directionally localized pieces. Shifting in short direction
stops tubes from overlapping




Look in two different directions.

",
=S

Shifting in any direction must cause one direction to not overlap.
Therefore in the product a shift in any direction will cause
something to fail to overlap.



Divide T? into boxes of size 1/K

X
Xs 5 X,
X
oy, Xs
X1
X
2 | X, X

If (x1,---xn) is spread out among M boxes get and improvement
of
((N/MHN 1
N M
Each of these boxes is now an order hK quasimode. Repeat
process by flowing for times 1/K.



End result

As long at there is no loss this method will give
lule < Clul

for all p < co. Major possibility for loss is an inductive creep.

1/K

Need to treat clustered terms, do this inductively by further
breaking them apart, need to watch for loss of constants.



