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Laplacian Eigenfunctions

Let u be an eigenfunctions on smooth, compact, boundryless
Riemannian manifold (M, g)

∆u = λ2u

What are the Lp growth properties of u
Suppose M = T2 how can be include algebraic information into
analytic estimates?



Quantum mechanics

Eigenfunctions arise as stationary state of the Schrödinger equation

(
1

i

∂

∂t
−∆

)
ψ(t, x) = 0

ψ(t, x) = e itEu

∆u = E

λ2 = E physically is interpreted as energy of the system. Want to
study the high energy limit λ→∞



Spectral Clusters

Due to the uncertainty principle it is difficult to study one
eigenfunction directly. We study norms of spectral clusters on
windows of width w

Eλ =
∑

λj∈[λ−w ,λ+w ]

Ej

Ej projection onto λj eigenspace.

Obviously include eigenfunctions but also can include sums of
eigenfunctions if w is large enough. The smaller the window size
the closer cluster estimates become to true eigenfunction estimates.



Quasimodes

In the semiclassical setting we study approximate eigenfunctions or
quasimodes

(h2∆− 1)u = hwf

where ||f ||L2 = O(1), same as studying width w windows

(∆− λ2)
∑

λj∈[λ−w ,λ+w ]

cjuj =
∑

λj∈[λ−w ,λ+w ]

cj(λ+ λj)(λ− λj)uj

Divide by λ2 = h−2

∑
λj∈[λ−w ,λ+w ]

cj
(λ+ λj)(λ− λj)

λ2
uj = OL2(λ−1w) = OL2(hw)

So
Width w clusters→ Quasimodes of order hw



Laplacian Eigenfunctions as Stationary States

We work in semiclassical setting with h = λ−1

(hDt − h2∆)ψ(t, x) = 0

ψ(t, x) = e
it
h u(x)

(h2∆− 1)u = 0

Use this formulation to express eigenfunction as a time average.
Quasimodes of order hw

(h2∆− 1)u = hwf (x)

(hDt − h2∆)u = hwe
it
h f (x)



Invariance under propagation

Use the propagator U(t) = e ith∆{
(hDt − h2∆)U(t) = 0

U(0) = Id

We write

ψ(t, x) = e
it
h u(x) = e ith∆u(x) +

1

h

∫ t

0
e i(t−s)h∆[hwe

is
h f (x)]ds

u(x) = e−
it
h e ith∆u(x) + we−

it
h

∫ t

0
e i(t−s)h∆[e

is
h f (x)]ds

Can average this over times up to order 1/w .



Propagation times

Averaging over short times has the benefit of keeping the
analysis local however we are then unable to tell the difference
between good and bad quasimodes

Longer time averages will differentiate between quasimodes
however loss of locality
For w = 1 Sogge

||u||Lp . λδ(n,p) ||u||L2

δ(n, p) =

{
n−1

2 −
n
p

2(n+1)
n−1 ≤ p ≤ ∞

n−1
4 −

n−1
2p 2 ≤ p ≤ 2(n+1)

n−1

Sharp on the sphere



Toral Eigenfunctions

Special case when M = T2 = R2/2πZ2.
Eigenfunctions are the plane waves e iλk·x . Periodicity requires that
λk1 and λk2 are integers. So multiplicity is equal to the number
intersections of the circle of radius λ and the integer lattice.

This is known to be Cελ
ε.

So trivially we have better
estimates for T2. Are Lp

norms ever bounded?
Zygmund

||u||L4 ≤ 51/4 ||u||L2



e ith∆ on the Torus

Will develop Ũ(t) = e ith∆R2 in the form

Ũ(t)u =

∫
ẽ(t, x , y)u(y)dy

Then let Γ be the set of translations

U(t)u =
∑
γ∈Γ

∫
ẽ(t, x , γy)u(y)dy

Will find that this sum is finite as ẽ(t, x , γy) is supported when
d(x , γy) ≤ 1/w .



The propagator e ith∆R2

We want to solve the evolution equation{
(hDt −∆)Ũ(t) = 0

Ũ(0) = Id

Seek a solution of the form

Ũ(t)u =

∫
ẽ(t, x , y)u(y)dy

ẽ(t, x , y) = h−2

∫
e

i
h
φ(t,x ,y ,ξ)a(x , ξ)dξ



This is easy to solve can check that

ẽ(t, x , y) = h−2

∫
e

i
h

(<x−y ,ξ>+tξ·ξ)dξ

is a solution

hDt ẽ(t, x , y) = h−2|ξ|2
∫

e
i
h

(<x−y ,ξ>+tξ·ξ)dξ

hDxi ẽ(t, ξ, y) = h−2ξi

∫
e

i
h

(<x−y ,ξ>+tξ·ξ)dξ

so
(hDt − h2∆)ẽ(t, x , y) = 0

and

ẽ(0, x , y) = h−2

∫
e

i
h
<x−y ,ξ>dξ



Choosing quasimode order

We want to choose a w so that we get no pollution from
eigenfunctions with similar eigenvalue
Toral eigenfunctions e iλk·x where λk is a integer lattice point.
Therefore λ2 ∈ Z.

(λ± w)2 = λ2 ± λw + w2

Need to choose w = λ−1 or in semiclassical notation w = h



Quasimodes on the torus

We will assume we are working with an order h2 quasimode
(equivalent to w = h). We can propagate for times up to h−1

u(x)=h

∫
χ(ht)e−

it
h e ith∆u(x)dt+h2

∫
χ(ht)e−

it
h

∫ t

0
e i(t−s)h∆[e

is
h f (x)]dsdt

where χ(t) is supported in ε ≤ t ≤ 2ε. Focus on first term

h

∫
χ(ht)e−

it
h e ith∆udt = h

∑
γ∈Γ

∫
e−

it
h ẽ(t, x , γy)χ(ht)u(y)dtdξdy

Will use stationary phase to simplify∫
e−

it
h ẽ(t, x , γy)χ(ht)u(y)dtdξdy

for each γ



∫
e−

it
h ẽ(t, x , γy)χ(ht)dtdξ = h−2

∫
e

i
h

(<x−γy ,ξ>+tξ·ξ−t)χ(ht)dtdξ

Stationary phase in (t, ξ)

ξ · ξ = 1

x − γy = 2tξ∫
e−

it
h ẽ(t, x , γy)χ(ht)u(y)dtdξdy = h−1/2

∫
e

i
h
|x−γy |a(x , y)u(y)dy

where a(x , y) is supported εh−1 ≤ |x − y | ≤ 2εh−1

u(x) = h1/2
∑
γ∈Γ

∫
e

i
h
|x−γy |a(x , γy)u(y)dy





Directional localization

We write
u(x) = Tu

Tu = h1/2
∑
γ∈Γ

∫
e

i
h
|x−γy |a(x , γy)u(y)dy

Definition

Let ξ ∈ S1 and ζ : R2 → R+ a smooth cut off function supported
in |η| ≤ 2. Let Tξ be given by

Tξu = h1/2
∑
γ∈Γ

∫
e

i
h
|x−γy |a(x , γy)ζ

(
1

h

(
x − γy
|x − γy |

− ξ
))

u(y)dy

We say Tξ is the component of T localized in direction ξ



Algebraic to analytic

Consider
Tξe

i
h
k·x

where |ξ − k | ≥ h1−ε

h1/2
∑
γ∈Γ

∫
e

i
h
|x−γy |+k·ya(x , γy)ζ

(
1

h

(
x − γy
|x − γy |

− ξ
))

dy

Integrate by parts to pick up

h

∣∣∣∣ x − γy|x − γy |
− k

∣∣∣∣−1

each time. Contribution is ON(hNε). These terms can be removed

T =
∑

lattice points ξk

Tξk

Now we have recovered the correct L2 → L∞ norm. What about
other values of p.



Long overlapping tubes. Want to know what happens in an O(1)
region. Place a cut off there

No longer have a h2 quasimode. Cut off makes it order h
quasimode. So propagate for O(1) time



Flowing for O(1) time we have

u(x) = T 1u

T 1u = h−
1
2

∫
e

i
h
|x−y |a(x , y)u(y)dy

with a(x , y) supported in ε ≤ |x − y | ≤ 2ε. First split T 1 into K
directions

T 1
ξ u = h−

1
2

∫
e

i
h
|x−y |a(x , y)ζ

(
K

(
x − y

|x − y |
− ξ
))

u(y)dy

T 1 =
K∑
i=1

T 1
ξi

Will study

〈v ,
K∑
j=1

T 1
ξj
〉N



〈v ,
K∑
i=j

T 1
ξj
〉N =

∑
[j1,··· ,jN ]

N∏
i=1

〈v ,T 1
ξii
u〉

Most terms in the sum include approximately K distinct directions
repeated equally. Will show that there is an improvement for
spatially spread out terms. Let

T[j1,··· ,jN ]u
⊗N =

N∏
i=1

(T 1
ξji
u)(xj)

Symmeterize

T sym
[j1,··· ,jN ]v(x1, · · · , xN) =

1

(N!)2

∑
σ,π∈SN

N∏
i=1

(T 1
ξjσ(i)

v)(xπ(i))

where SN is the symmetric group of order N



We denote a point X ∈ R2N as X = (x1, . . . , xN). In this notation

T sym
[j1,··· ,jN ]v(X ) =

∫
K[j1,··· ,jN ](X ,Y )v(Y )dY

where

Kj1,··· ,jN ](X ,Y ) =
1

(N!)2

∑
σ,π∈SN

Kσ,π
[j1,··· ,jN ](X ,Y )

Kσ,π
[j1,··· ,jN ](X ,Y ) =

N∏
i=1

Kσ
ξjσ(i)

(xπ(i), yi )

Kσ
ξji

(x , y) = e
i
h
|x−y |a(x , y)ζ

(
K

(
x − y

|x − y |
− ξji

))



Fix π consider ∑
σ∈SN

Kσ,π
[j1,··· ,jN ](X ,Y )

only get overlap if all ξjσ(i)
are the same



How many overlaps can we have?

Each block can have (N/K )! permutations
within it. There are K blocks so

((N/K )!)K ≈ (N/K )N

Compare with one N! term to get an
improvement of (1/KN). Since there are KN

ways of creating this kind of product this
cancels out but gives the correct L∞ estimate,
we still have one copy of (N!) left.



Look at directionally localized pieces. Shifting in short direction
stops tubes from overlapping



Look in two different directions.

Shifting in any direction must cause one direction to not overlap.
Therefore in the product a shift in any direction will cause
something to fail to overlap.



Divide T2 into boxes of size 1/K

If (x1, · · · xN) is spread out among M boxes get and improvement
of

((N/M)!)N

N!
≈ 1

M
Each of these boxes is now an order hK quasimode. Repeat
process by flowing for times 1/K .



End result

As long at there is no loss this method will give

||u||Lp ≤ C ||u||L2

for all p <∞. Major possibility for loss is an inductive creep.

Need to treat clustered terms, do this inductively by further
breaking them apart, need to watch for loss of constants.


