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Estimates in Rd

Main resolvent estimate:

‖(∆ + λ2 ± i0)−1f‖Lpd . λ−
2
d+1 ‖f‖

L
p′
d

Proof by complex interpolation:

(∆ + λ2 ± i0)iσ : L2 → L2

(∆ + λ2 ± i0)−
d+1
2

+iσ : L1 → L∞

Kernel decay for (∆ + λ2 ± i0)−1: |x|−
d−1
2 .

L2 → Lpd formulation:

‖u‖Lpd . λ
d−1

2(d+1) (λ−1‖(∆ + λ2)u‖L2 + ‖u‖L2)

Spectral projector version:

‖P[λ,λ+1]u‖Lpd . λ
d−1

2(d+1) ‖u‖L2
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Estimates in Rd

Critical exponent:
pd = 2(d+1)

d−1

Full range of p’s:

‖P[λ,λ+1]u‖Lp(M) . λ
d( 1

2
− 1
p
)− 1

2 ‖f‖L2(M) , pd ≤ p ≤ ∞ ,

‖P[λ,λ+1]u‖Lp(M) . λ
d−1
2

( 1
2
− 1
p
) ‖f‖L2(M) , 2 ≤ p ≤ pd , ,

Counterexamples:

pd < p ≤ ∞: û bump in the annulus |ξ| ∈ [λ, λ+ 1]

2 ≤ p ≤ pd: û bump in a rectangle 1× λ−
1
2 (Knapp

counterexample)
also all intermediate scales
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Compact manifolds

(M, g) compact Riemannian manifold.

g smooth: Sogge ..... Fourier Integral Operator parametrix,
oscillatory integrals

g ∈ C1,1: Smith .... Wave packet parametrix

g ∈ Cs, 0 < s < 2: present talk ... estimates with losses.

Paradifferential calculus:

∆guλ = ∆g<λσuλ + error

C2 scale: δx = λ
s−2
s+2 , σ = 2

s+2 , wave packet parametrix

C1 scale: δx = λs−1, σ = 1, energy propagation

D. Tataru (UC Berkeley) Lp bounds for spectral projectors on compact manifoldsSeptember 2012 4 / 10



C1 metrics
Scales:

C2 scale: δx = λ−
1
3 , σ = 2

3

wave packet size: λ−
2
3 , angle: λ−

1
3

Enemies:
angle width height period counterexample for

Wide 1 λ−1 λ−1 1 p ≥ 2(d+2)
d−1

Narrow λ−
1
3 λ−

2
3 λ−

1
3 λ−

1
3 p ≤ 2(d+2)

d−1
Intermediate kλ−

1
3 kλ−

2
3 k−1λ−

1
3 kλ−

1
3 p = 2(d+2)

d−1

Conjecture

The following bounds hold for C1 metrics:

‖P[λ,λ+1]u‖Lp(M) . λ
d( 1

2
− 1
p
)− 1

2 ‖u‖L2(M) ,
2(d+2)
d−1 ≤ p ≤ ∞ ,

‖P[λ,λ+1]u‖Lp(M) . λ
2(d−1)

3
( 1
2
− 1
p
) ‖u‖L2(M) , 2 ≤ p ≤ 2(d+2)

d−1 .
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Our result: d = 2

Theorem

The following bounds hold for C1 metrics in dimension d = 2:

‖P[λ,λ+1]u‖Lp(M) . λ
2( 1

2
− 1
p
)− 1

2 ‖u‖L2(M) , 8 < p ≤ ∞ ,

‖P[λ,λ+1]u‖Lp(M) . λ
2
3
( 1
2
− 1
p
) ‖u‖L2(M) , 2 ≤ p < 8 .

‖P[λ,λ+1]u‖L8(M) . (log λ)3λ
1
4 ‖u‖L2(M)

partial results for d ≥ 3

partial results for d = 2 in earlier paper

log loss due to dyadic summations

p = 8: enemies at all scales
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Wave packets and bushes
Wave packets decomposition on C2 scale δt = λ−

1
3

u =
∑

aTuT

wave packet scales: δx = λ−
2
3 , δξ = λ

2
3 , δθ = λ−

1
3

Fourier coefficients aT are nonconstant due to truncation errors

dyadic decomposition with respect to size of aT

dyadic decomposition w.r. to time intervals on which ‖a′T ‖ � aT .

k- Bushes ( of pachets with comparable aT ):∑
χT ≈ k

Coherence time: k−1λ−
1
3 (if focused)

Minimal refocusing time kλ−
1
3 (worst case scenario)
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Proof ideas:

Step 1: k-bush counting.

Count δt = k−1λ−
1
3 time slices containing k-bushes

Count restricted to time intervals δt = kλ−
1
3

No room for errors

Step 1: k-bush estimates.

need to estimate all k-bushes in a δt = k−1λ−
1
3 time slice

bushes need not be focused

overlapping can occur for bushes in different directions

packets can belong to multiple bushes

No room for errors
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Bush counting
Main idea: Bushes on different slices are “almost orthogonal”.
Assuming aT = 1 define projectors

Pj = k−1
∑

uT 〈
∑

uT , ·〉

Then

‖PjS(tj , tl)Pl‖L2→L2 . k−1 max{λ−
1
3 |tj − tl|−1, λ

1
3 |tj − tl|}

Not enough for Cotlar’s lemma.
a) Short time |tj − tl| < λ−

1
3 (below C2 scale)

can use C2 parametrix

count the number of packets though two bushes

b) Long time |tj − tl| > λ−
1
3 (above C2 scale)

cannot use C2 parametrix

use instead generalized coherent packets with δx = |ti − tj |2,
δξ = |ti − tj |λ.
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L8 estimates for k-bushes

Main difficulty: k-bushes are not necessarily disjoint or focused.
Main idea: For u =

∑
uT decompose with respect to angles

u2 =
∑

∠(T,S)>kλ−
1
3

uSuT +
∑

∠(T,S)<kλ−
1
3

uSuT

a) Large angle interactions: use bilinear L2 bound,

‖uv‖L2 . ∠(u, v)−
1
2 ‖u0‖L2‖v0‖L2

and interpolate with the L∞ bound (given by k).
b) Small angle interactions: by orthogonality it suffices to fix the
position and direction. Then we are left with focused isolated bushes.
For these use the L6 Strichartz and interpolate with the L∞ bound
(again given by k).
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