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The Ginzburg–Landau Model

Introduced in 1950 as a phenomenological model of a superconductor. For given
vector and scalar potentials A and W on a compact set C,

EGL(ψ)=

∫
C

[
B1|(−i∇+ 2A(x))ψ(x)|2 +B2W (x)|ψ(x)|2 +B3

(
|ψ(x)|4− 2D|ψ(x)|2

)]
dx

Here, B1, B3 > 0, B2 ∈ R and D > 0 are coefficients.

Ginzburg–Landau energy EGL = infψ EGL(ψ)

A minimizing ψ describes the macroscopic variations in the superfluid density. The
normal state corresponds to ψ ≡ 0, while |ψ| > 0 describes superconducting particles.

For us, C = [0, 1]3 and ψ satisfies periodic boundary conditions.

One is often interested in minimizing over both ψ and A, adding an additional field energy
term. For us, A is fixed (but arbitrary).
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The BCS Functional

Bardeen–Cooper–Schrieffer (1957): a microscopic theory of superconductivity
State of the system described by a 2× 2 operator-valued matrix

Γ =

(
γ α
ᾱ 1− γ̄

)
with 0 ≤ Γ ≤ 1

Here, 0 ≤ γ ≤ 1 is the 1-particle density matrix, and α the Cooper-pair wavefunction.

For chemical potential µ ∈ R and temperature T > 0, the BCS energy functional is

Tr

[((
−i∇+ Ã(x)

)2

− µ+ W̃ (x)

)
γ

]
− T S(Γ) +

∫∫
Ṽ (x− y)|α(x, y)|2 dx dy .

The entropy equals S(Γ) = −Tr [Γ ln Γ].

The BCS functional can be heuristically derived from the full many-body Hamiltonian with
pair-interaction V via two steps of simplification. First, one considers only quasi-free
states, and second one neglects the direct and exchange term in the interaction energy.
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Microscopic vs. Macroscopic Scale

We are interested in interactions Ṽ (x) = V (h−1x) of size one varying on themicroscopic
scale and external fields Ã(x) = hA(hx) and W̃ (x) = h2W (hx) which are weak and vary
on the macroscopic scale. Here h is a small parameter. Thus,

FBCS(Γ) := Tr
[(

(−ih∇+ hA(x))
2 − µ+ h2W (x)

)
γ
]
− T S(Γ)

+

∫∫
C×R3

V (h−1(x− y))|α(x, y)|2 dx dy

To avoid boundary conditions, we assume that the system is periodic (with period 1).
C denotes the unit cube [0, 1]3, and Tr stands for the trace per unit volume.

We make the following assumptions on the functions A, W and V appearing in FBCS.

• W and A are periodic, and Ŵ (p) and |Â(p)|(1 + |p|) are summable.

• V is real-valued and reflection-symmetric, i.e., V (x) = V (−x), with V ∈ L3/2(R3).

Non-local potentials V (as in the original BCS model) could also be considered.
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The Translation-Invariant Case

For W = 0 = A, we can restrict to translation-invariant states Γ. In this case, there
exists a critical temperature Tc ≥ 0 such that

• For T ≥ Tc, α = 0 in any minimizer of FBCS.

• For T < Tc, α ̸= 0 in any minimizer of FBCS.

In fact, Tc turns out to be the unique T such that

−∇2 − µ

tanh
(

−∇2−µ
2T

) + V (x) =: KT (−i∇) + V (x)

has 0 as its lowest eigenvalue (Hainzl, Hamza, Seiringer, Solovej 2008).

In the following, we shall assume that V is such that Tc > 0, and that the eigenvalue 0
of KTc(−i∇) + V is simple. This is satisfied, e.g., if V̂ ≤ 0 (and not identically zero).

Let α0 denote the eigenfunction of KTc(−i∇) + V corresponding to eigenvalue 0.
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Main Results: Energy Asymptotics

Let Γ0 denote the minimizer of FBCS for V = 0, i.e.,

Γ0 :=

(
γ0 0
0 1− γ̄0

)
with γ0 =

(
1 + exp

(
(−ih∇+ hA(x))2 + h2W (x)− µ)/T

))−1

Define the energy difference

FBCS(T, µ) = inf
0≤Γ≤1

FBCS(Γ)−FBCS(Γ0) .

Note that FBCS(Γ0) = T Tr ln (1− γ0) = O(h−3) for small h.

THEOREM 1. Fix D > 0. For appropriate coefficients B1, B2 and B3

FBCS(Tc(1− h2D), µ) = h
(
EGL + o(1)

)
with EGL = infψ EGL(ψ) and const. h2 ≥ o(1) ≥ −const. h1/5 for small h.

For smooth enough A and W , one could also expand FBCS(Γ0) to order h. We bound
directly the energy difference, however!
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Macroscopic Variations in the Superfluid Density

THEOREM 2. If Γ is an approximate minimizer of FBCS at T = Tc(1− h2D),
in the sense that

FBCS(Γ) ≤ FBCS(Γ0) + h
(
DEGL + ϵ

)
for some small ϵ > 0, then the corresponding α can be decomposed as

α =
h

2

(
ψ(x)α̂0(−ih∇) + α̂0(−ih∇)ψ(x)

)
+ σ

with EGL(ψ) ≤ EGL + ϵ+ const. h1/5 and∫
C×R3

|σ(x, y)|2 dx dy ≤ const. h1−2/5

To appreciate the bound on σ, note that the square of the L2(C × R3) norm of the main
term in α is of the order h−1 = h−3h2. To leading order in h, we thus have

α(x, y) ≈ 1

2h2
(ψ(x) + ψ(y))α0

(
x−y
h

)
≈ h−2 ψ

(
x+y
2

)
α0

(
x−y
h

)
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The Coefficients in the GL Functional

Let t be the Fourier transform of 2KTcα0 = −2V α0, where ∥α0∥2 = 1. Let

g1(z) =
e2z − 2zez − 1

z2(1 + ez)2
, g2(z) = g′1(z) + 2g1(z)/z

and

C =

(
βc

∫
R3

t(q)4
g1(βc(q

2 − µ))

q2 − µ
dq

)−1 ∫
R3

t(q)2

cosh2
(
βc

2 (q2 − µ)
) dq .

Then the matrix B1 and the numbers B2 and B3 are given by

(B1)ij = C
β2
c

16

∫
R3

t(q)2
(
δijg1(βc(q

2 − µ)) + 2βcqiqj g2(βc(q
2 − µ))

) dq

(2π)3
,

B2 = C
β2
c

4

∫
R3

t(q)2 g1(βc(q
2 − µ))

dq

(2π)3
,

B3 = C2 β
2
c

16

∫
R3

t(q)4
g1(βc(q

2 − µ))

q2 − µ

dq

(2π)3
.
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Key Semiclassical Estimates

For ψ ∈ H2
loc(Rd) and t “sufficiently nice”, let ∆ denote the operator

∆ = −h
2
(ψ(x)t(−ih∇) + t(−ih∇)ψ(x))

The effective Hamiltonian on L2(Rd)⊗ C2 is

H∆ =

(
(−ih∇+ hA(x))

2 − µ+ h2W (x) ∆

∆̄ − (ih∇+ hA(x))
2
+ µ− h2W (x)

)
THEOREM 3. Let f(z) = − ln (1 + e−z) and φ(p) = 1

2
t(p)
p2−µ tanh(β2 (p

2 − µ)). Then

hd

β
Tr [f(βH∆)− f(βH0)] = h2E1 + h4E2 +O(h6)

(
∥ψ∥6H1(C) + ∥ψ∥2H2(C)

)
,

for explicit E1 and E2. Moreover, the off-diagonal entry α∆ of [1 + eβH∆ ]−1 satisfies∥∥∥α∆ − h
2 (ψ(x)φ(−ih∇) + φ(−ih∇)ψ(x))

∥∥∥
H1

≤ const. h3−d/2
(
∥ψ∥H2(C) + ∥ψ∥3H1(C)

)
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Upper Bound to the Energy

One simple takes as trial state

Γ = Γ∆ :=
[
1 + eβH∆

]−1

with t the Fourier transform of 2KTcα0 = −2V α0, and computes

FBCS(Γ∆)−FBCS(Γ0) = − 1

2β
Tr

[
ln(1 + e−βH∆)− ln(1 + e−βH0)

]
− h2−2d

∫
C×Rd

V (x−yh )
∣∣1
2 (ψ(x) + ψ(y))α0(

x−y
h )

∣∣2 dx dy

(2π)d

+

∫
C×Rd

V (x−yh )

∣∣∣∣ h1−d

2(2π)d/2
(ψ(x) + ψ(y))α0(

x−y
h )− α∆(x, y)

∣∣∣∣2 dx dy
For β−1 = T = Tc(1−h2D), the terms in the first two lines yield h4−dEGL(ψ)+O(h6−d)
for ψ ∈ H2(C). The last line can be controlled by the H1(C) norm of the operator, yielding
also an error term O(h6−d).
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Ideas in the Lower Bound

The key is to show that if Γ is an approximate minimizer, then Γ ≈ [1+ eβH∆ ]−1 for
suitable ψ (approximately) minimizing EGL.

Step 1. For any Γ with FBCS(Γ) ≤ FBCS(Γ0), the corresponding α satisfies

α = h
2

(
ψ(x)α̂0(−ih∇) + α̂0(−ih∇)ψ(x)

)
+ σ

for some ψ with H1(C) norm bounded independently of h, and with ∥σ∥H1 ≤ O(h2−d/2).

Step 2. With ψ as above, we compute

FBCS(Γ)−FBCS(Γ0) = −T
2
Tr

[
ln(1 + e−βH∆)− ln(1 + e−βH0)

]
− h2−2d

∫
C×Rd

V (h−1(x− y))14 |ψ(x) + ψ(y)|2 |α0(h
−1(x− y))|2 dx dy

(2π)d

+ T H(Γ,Γ∆) +

∫
C×Rd

V (h−1(x− y))|σ(x, y)|2 dx dy ,

where H denotes the relative entropy.
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Relative Entropy

For general Γ and Γ∆ = [1 + eβH∆ ]−1, it is true that

H(Γ,Γ∆) = TrΓ (ln Γ− ln Γ∆) ≥ Tr

[
βH∆

tanh 1
2βH∆

(Γ− Γ∆)
2

]
Since x 7→

√
x/ tanh

√
x is an operator monotone function, we can further bound

H∆

tanh 1
2βH∆

≥ (1−O(h))
H0

tanh 1
2βH0

≥ (1−O(h))KT (−ih∇)⊗ IC2

Recall that, by definition, KTc
(−i∇)+V (x) ≥ 0, and hence KT (−i∇)+V (x) ≥ −O(h2).

Moreover, α− α∆ ≈ σ. This allows to get a lower bound on

T H(Γ,Γ∆) +

∫
C×Rd

V (h−1(x− y))|σ(x, y)|2 dx dy

that is o(h4−d).
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Conclusion

• Rigorous derivation of Ginzburg-Landau theory, starting from the BCS model.

• For weak external fields and close to the critical temperature, GL arises as an effec-
tive theory on the macroscopic scale.

• The relevant scaling limit is semiclassical in nature.

Some open problems:

• Treat physical boundary conditions

• Treat self-consistent magnetic fields

• Derive BCS theory from many-body quantum mechanics
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THANK YOU FOR YOUR ATTENTION!
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