Maximum-likelihood regions and smallest credible regions

arXiv:1302.4081[quant-ph]

Jiangwei Shang¹, Hui Khoon Ng^{1,2}, Arun Sehrawat¹, Xikun Li¹, *Berge Englert*^{1,3}

¹Centre for Quantum Technologies (CQT), Singapore ²DSO National Laboratories, Singapore ³Department of Physics, National University of Singapore (NUS)

Centre For Quantum Technologies

Scenario of quantum state estimation

The **source** emits independently and identically prepared quantum-information carriers whose relevant degrees of freedom are described by the "true" statistical operator ρ , which is unknown.

The **probability-operator measurement** (POM) has *K* outcomes Π_k that give rise to the "true" detection probabilities p_k in accordance with the Born rule, $p_k = \text{tr} \{\rho \Pi_k\}$.

The **actual data** *D* consist of $n_1, n_2, ..., n_K$ detector clicks in one particular sequence upon measuring a total of $N = n_1 + n_2 + \cdots + n_K$ copies. [You may want to verify that the sequence is not untypical.]

State estimation: Exploit the data for an educated guess about $p = (p_1, p_2, ..., p_K)$; convert $p \rightarrow \rho$ if you can.

Principles of quantum state estimation

1 Be guided by common sense and the methods of classical statistical inference.*

2a Estimate event probabilities from the data, after measuring *N* copies.

2b Determine the estimator $\hat{\rho}$ of the state from the estimated probabilities $\hat{p}_1, \hat{p}_2, \hat{p}_3, \ldots$ and, if necessary, invoke additional criteria (such as Jaynes's maximum-entropy criterion).

Note 1: $n = (n_1, n_2, ..., n_K) \rightarrow \hat{p} = (\hat{p}_1, ..., \hat{p}_K)$ is what the data tells us; $\hat{p} \rightarrow \hat{\rho}$ is often not unique, and then the data does *not* tell us $\hat{\rho}$ and one needs those "additional criteria".

Note 2: $\hat{p}_k \rightarrow p_k^{(true)}$ for $N \rightarrow \infty$ ("consistency" — largely a tautology).

*Read (1) Edwin Jaynes's *Probability Theory* — *The Logic of Science* and don't ignore his advice; (2) other pertinent statistics literature.

Reconstruction space (1)

Reconstruction space \mathcal{R}_0 : A convex set of ρ s such that $p \leftrightarrow \rho$ is a one-to-one mapping.

Example 1: Qubit states $\rho = \frac{1}{2}(1 + x\sigma_x + y\sigma_y + z\sigma_z)$ measured by the 4-outcome qubit POM with

and constraints $p_1 + p_2 = \frac{1}{2}$, $p_3 + p_4 = \frac{1}{2}$, $p_1^2 + p_2^2 + p_3^2 + p_4^2 \le \frac{3}{8}$.

Example 2: Qubit states measured by the 3-outcome trine POM with

$$p_1 = \frac{1}{3}(1+x), \quad \frac{p_2}{p_3} = \frac{1}{6}(2-x\pm\sqrt{3}y)$$

and constraints $p_1 + p_2 + p_3 = 1, \, p_1^2 + p_2^2 + p_3^2 \leq rac{1}{2}$

For both examples, \mathcal{R}_0 is the equatorial disk of the Bloch ball; the data provide *no* information about *z*.

Reconstruction space (2)

Example 3: Harmonic oscillator measured by the 2-outcome POM with

$$p_1 = \langle 0 | \rho | 0 \rangle, \quad p_2 = 1 - p_1$$

and constraint $p_1 + p_2 = 1$.

Here, the reconstruction space consists of all $\rho = |0\rangle p_1 \langle 0| + p_2 \rho'$ where ρ' is *any* state with no ground-state component, and the probability space is that of a tossed coin. The data provide only information about the ground-state probability.

General observations:

- Reconstruction space (may not be unique) \equiv Probability space
- Because of the quantum constraints, the probability space is usually smaller than that of the *K*-sided die:

Quantum State Estimation

= Classical state estimation with quantum constraints

Point likelihood, MLE, MLR, SCR

Point likelihood: $L(D|\rho) = p_1^{n_1} p_2^{n_2} \cdots p_K^{n_K}$ = the probability of obtaining data *D* if ρ is the state.

Maximum-likelihood estimator (MLE) $\hat{\rho}_{ML}$: That ρ in \mathcal{R}_0 for which the data are more likely than for any other state:

$$\max_{\rho} L(D|\rho) = L(D|\widehat{\rho}_{\mathsf{ML}}).$$

How can we equip the MLE with error bars? Our answer: Use optimal regions.

Maximum-likelihood region (MLR) $\widehat{\mathcal{R}}_{ML}$: That region of estimators for which the data are more likely than for any other region of the same pre-chosen size.

Smallest credible region (SCR) $\hat{\mathcal{R}}_{sc}$: The smallest region with the pre-chosen credibility.

Size \equiv Prior content

Scenario 1: You have a pre-existing notion of size for regions in \mathcal{R}_0 ? Fine! Scale all sizes such that \mathcal{R}_0 has unit size; then assign the same prior content to regions of the same size.

Scenario 2: You do not have a pre-existing notion of region size? Choose the prior of your liking and measure the size of a region by its prior content.

Either way: Size of a region \equiv Its prior content.

Notation: The size of region \mathcal{R} is $S_{\mathcal{R}} = \int_{\mathcal{R}} (d\rho)$ where $(d\rho)$ is the prior probability of the infinitesimal space element at state ρ .

Reference: M.J. Evans, I. Guttman, T. Swartz, Can. J. Stat. 34, 113 (2006).

MLRs and SCRs are BLRs (1)

1 Joint probability that ρ is in \mathcal{R} and data D is obtained:

$$\operatorname{prob}(\boldsymbol{D}\wedge\mathcal{R})=\int\limits_{\mathcal{R}}(\mathsf{d}\rho)\,\boldsymbol{L}(\boldsymbol{D}|\rho)$$

2 Prior likelihood L(D): prob $(D \land \mathcal{R}_0) = L(D) = \int_{\mathcal{R}_0} (d\rho) L(D|\rho)$

3 Normalization:
$$\sum_{D} L(D|\rho) = 1$$
, $\sum_{D} L(D) = 1$

4 Two factorizations: $\operatorname{prob}(D \wedge \mathcal{R}) = L(D|\mathcal{R})S_{\mathcal{R}} = C_{\mathcal{R}}(D)L(D)$ with the **region likelihood** $L(D|\mathcal{R})$ and the **credibility** $C_{\mathcal{R}}(D)$.

Both are conditional probabilities: The region likelihood is the probability of obtaining the data D if the state is in the region \mathcal{R} ; the credibility is the probability that the actual state is in the region \mathcal{R} if the data D have been obtained—the posterior probability of the region.

MLRs and SCRs are BLRs (2)

4 Two factorizations: $\operatorname{prob}(D \land \mathcal{R}) = L(D|\mathcal{R})S_{\mathcal{R}} = C_{\mathcal{R}}(D)L(D)$

5 <u>MLR</u>: Maximize the region likelihood for given size,

$$\max_{\mathcal{R}} L(D|\mathcal{R}) = L(D|\hat{\mathcal{R}}_{\scriptscriptstyle\mathsf{ML}}) \quad ext{with } \mathcal{S}_{\mathcal{R}} = s$$

6 SCR: Minimize the size for given credibility,

$$\min_{\mathcal{R}} \mathsf{S}_{\mathcal{R}} = \mathsf{S}_{\hat{\mathcal{R}}_{\mathrm{sc}}} \quad ext{with } \mathsf{C}_{\mathcal{R}}(\mathsf{D}) = \mathsf{c}$$

7 These optimization problems are duals of each other:

	MLR	SCR
$S_{\mathcal{R}}$	given	minimize
$\operatorname{prob}(D \wedge \mathcal{R})$	maximize	given

Each MLR is a SCR, each SCR is a MLR.

MLRs and SCRs are BLRs (3)

8 Infinitesimal variation of region \mathcal{R} from a distortion of its boundary $\partial \mathcal{R}$:

9 Null response of $S_{\mathcal{R}}$ and $\operatorname{prob}(D \wedge \mathcal{R})$:

$$\delta S_{\mathcal{R}} = \int_{\partial \mathcal{R}} \overrightarrow{dA}(\rho) \cdot \overrightarrow{\delta\epsilon}(\rho) = 0,$$

$$\delta \text{prob}(D \wedge \mathcal{R}) = \int_{\partial \mathcal{R}} \overrightarrow{dA}(\rho) \cdot \overrightarrow{\delta\epsilon}(\rho) L(D|\rho) = 0$$

MLRs and SCRs are BLRs (4)

10 Requiring that both $\delta S_{\mathcal{R}} = 0$ and $\delta \operatorname{prob}(D \wedge \mathcal{R}) = 0$ implies that the point likelihood $L(D|\rho)$ is constant on $\partial \mathcal{R}$, and larger inside than on the boundary: The MLRs and the SCRs are bounded-likelihood regions (BLRs), which consist of all ρ s for which $L(D|\rho)$ exceeds a threshold value:

Reference: M.J. Evans, I. Guttman, T. Swartz, Can. J. Stat. 34, 113 (2006).

MLRs and SCRs are BLRs (5)

11 The set of BLRs is independent of the prior; each BLR contains the MLE.

12 Notation: \mathcal{R}_{λ} is the BLR with $L(D|\rho) \ge \lambda L(D|\hat{\rho}_{ML})$; $s_{\lambda} =$ size of \mathcal{R}_{λ} ; $c_{\lambda} =$ credibility of \mathcal{R}_{λ} .

13 We have

$$c_{\lambda} > s_{\lambda}$$
 for $0 < \lambda < 1$.

In the limit of $\lambda \rightarrow 1$, the BLR \mathcal{R}_{λ} degenerates into the one-point region that contains the MLE, and $c_{\lambda} \rightarrow 0$, $s_{\lambda} \rightarrow 0$, while

$$rac{c_\lambda}{s_\lambda}
ightarrow rac{L(D|\hat
ho_{\mathsf{ML}})}{L(D)} > 1 \, .$$

In the limit of $\lambda \rightarrow 0$, the \mathcal{R}_{λ} becomes full reconstruction space \mathcal{R}_{0} , and $c_{\lambda} \rightarrow 1$, $s_{\lambda} \rightarrow 1$.

Confidence regions (1)

MLRs, SCRs: The data are what they are; the unknown ρ is regarded as a random variable.

Confidence regions: The unknown state is what it is; the data D (as potentially obtained in many measurements of N copies each) are regarded as random.

Assign region C_D to data D; the set **C** that is made up of all the CDs has the confidence level

$$\gamma(\mathbf{C}) = \min_{\rho} \sum_{D} \left\{ \begin{array}{c} L(D|\rho) \text{ if } \rho \text{ is in } \mathcal{C}_{D} \\ 0 \text{ else} \end{array} \right\} ,$$

that is: at least the fraction $\gamma(C)$ of the regions contains ρ (in many measurements of *N* copies each).

Observations during the 2011 workshop: Regions with high credibility can be used as confidence regions (Christandl & Renner); a set of BLRs can be a pretty good set of confidence regions (Blume-Kohout).

References: M. Christandl, R. Renner, Phys. Rev. Lett. **109**, 120403 (2012); R. Blume-Kohout, arXiv:1202:5270[quant-ph]

Confidence regions (2)

Example: Two copies of the harmonic oscillator measured:

Regions (a) and (b): Two set of confidence regions.

Regions (c): SCRs for the primitive prior $(d\rho) = dp_1 dp_2 \delta(p_1 + p_2 - 1)$

Regions (d): SCRs for Jeffreys prior $(d\rho) = dp_1 dp_2 \frac{\delta(p_1 + p_2 - 1)}{\pi \sqrt{p_1 p_2}}$

Choice of prior

- 1 Uniformity a red herring: All priors are uniform.
- 2 Utility: Be guided by the eventual application.
- **3** Symmetry: Helpful if used with care.
- 4 Invariance form invariance, really.
- **5** Conjugation: Mock posterior for a target state.
- **6** Marginalization: Convert a prior on the full state space to its marginal on the reconstruction space.

One reference of many: R.E. Kass, L. Wasserman, J. Am. Stat. Assoc. **91**, 1343 (1996)

Examples of priors, illustrated by uniform tilings (1)

Tiling (a): A prior in the full-qubit space that is rotationally invariant and uniform in the purity, marginalized onto the unit disk.

Tiling (b): The common primitive prior of the 4-outcome POM and the three-outcome POM.

Examples of priors, illustrated by uniform tilings (2)

Tilings (c1) and (c2): Jeffreys prior for the 4-outcome POM. Tilings (d1) and (d2): Jeffreys prior for the trine POM.

Examples of SCRs

SCRs for credibility c = 0.5 and c = 0.9; 24 copies measured (in a simulated experiment); primitive (red) and Jeffreys (blue) prior. (a) 4-outcome POM: counts $(n_1, n_2, n_3, n_4) = (8, 5, 10, 1)$ and (6, 3, 10, 5)(b) 3-outcome POM: counts $(n_1, n_2, n_3) = (15, 8, 1)$ and (13, 7, 4)

Workshop on MM of Quantum Tomography, Toronto, 19 February 2013 (18/20)

Outlook

1 While we have efficient methods for calculating the MLE for the data at hand (Many thanks to the Olomouc group!), we are lacking efficient algorithms for finding the SCR.

2 It may be possible to reduce the dimensionality of the problem if one is really only interested in a few properties of the state (such as the concurrence of a two-qubit state).

3 For the evaluation of the multi-dimensional integrals, one needs good sampling strategies. Boot strapping of the data may help.

4 Quantum aspects of the problem enter **only** through the Born rule. Except for the implied restrictions on the probabilities, there is no difference between state estimation in quantum mechanics and statistics. Accordingly, **quantum mechanicians can benefit much from methods developed by statisticians.**

Discussions with David Nott (Department of Statistics and Applied Probabilty, NUS) are gratefully acknowledged.

K < 同 K < 回 K < 回 K</p>

THANK YOU

Workshop on MM of Quantum Tomography, Toronto, 19 February 2013 (20/20)

・ 同 ト ・ ヨ ト ・ ヨ ト