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Weyl and Sub

Simple modules and subalgebras

Simple, finite-dimensional g-modules are parametrized by
dominant integral weights

V (λ)↔ λ ∈ P+.

V (λ) decomposes into h-weight space (denoted V (λ)µ)

dim V (λ)λ = 1 and V (λ) = U(n−).V (λ)λ.

Integrability condition:

(x−α )
λ(hα)+1.vλ = 0

for vλ ∈ V (λ)λ.
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Simple modules and subalgebras

Let a ⊆ g a simple subalgebra, such that

a = (a ∩ n+)⊕ (a ∩ h)⊕ (a ∩ n−)

is a triangular decomposition of a.

We further want compatibility for the root spaces:

a = h ∩ a⊕
⊕
α

gα ∩ a

Let g = sl4(C) and

a =


a 0 ∗ ∗
0 0 0 0
∗ 0 b ∗
∗ 0 ∗ c


such that a + b + c = 0. Then a is of type A2.
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Simple modules and subalgebras

Any V (λ) decomposes into a direct sum of simple a-modules

V (λ) ∼=a

⊕
τ∈P+

a

V a(τ)mλ,τ .

Especially
U(a).vλ = U(a ∩ n−).vλ

is a simple U(a)-module of highest weight λ|a∩h.
Let λ =

∑3
i=1 miωi , then

U(a).vλ ∼=a V a((m1 + m2)ω
a
1 + m3ω

a
2)
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Simple modules and current algebras

Changing the Lie algebras:

Let g⊗ C[t ] be the current algebra of g with bracket

[x ⊗ p(t), y ⊗ q(t)] := [x , y ]g ⊗ p(t)q(t).

Any c ∈ C induces a map

evc : g⊗ C[t ] −→ g ; x ⊗ p(t) 7→ p(c)x

Let λ ∈ P+, then V (λ) can be equipped with a g⊗ C[t ]-module
structure: Let v ∈ V (λ)

x ⊗ p(t).v := evc(x ⊗ p(t)).v = p(c)x .v

evc(V (λ)) is a simple g⊗ C[t ]-module.
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Simple modules and current algebras

Even more, let c1, . . . , ck ∈ C pairwise distinct and
λ1, . . . , λk ∈ P+

, then

Vc(λ) := Vc1(λ1)⊗ . . .⊗ Vck (λk )

is a simple g⊗ C[t ]/(
∏
(t − ci))-module, hence a simple

g⊗ C[t ]-module.

Theorem (Chari-Pressley)

Every simple, finite-dimensional g⊗ C[t ]-module is isomorphic
to such a tensor product.

We have further for h ⊗ p(t) ∈ h⊗ C[t ]:

h ⊗ p(t).vλ1 ⊗ . . .⊗ vλk =

(
k∑

i=1

λi(h)p(ci)

)
vλ1 ⊗ . . .⊗ vλk
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Simple modules and current algebras

Let a as before, and we consider the restriction of Vc(λ) to
a⊗ C[t ].

Again, the operation factors through a⊗ (
∏
(t − ci)), hence the

restricted module is a module for

a⊗ C[t ]/(
∏

(t − ci)) ∼=
⊕

a⊗ C[t ]/(t − ci).

This leads to

Proposition

Vc(λ) decomposes as a a⊗ C[t ]-module into a direct sum of
simple a⊗ C[t ]-modules.

Knowing mλi ,τ =⇒ decomposition formula for Vc(λ)

Note that
U(a⊗ C[t ]).vλ1 ⊗ . . .⊗ vλk

is a simple a⊗ C[t ]-module.

Posets and tensor products Fourier 8/ 16
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Weyl modules and subalgebras

We turn to Weyl modules:

To Vc(λ) we associate a ”largest” integrable module Wc(λ).
Wc(λ) is generated through a highest weight vector w , s.t.
h⊗ C[t ] acts by evaluation (as before) on w .
Wc(λ) is a module for

g⊗ C[t ]/
∏

(t − ci)
ni

for some ni =⇒ not a semi-simple Lie algebra.
These local Weyl modules are finite-dimensional.

Posets and tensor products Fourier 9/ 16
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Weyl modules and subalgebras

Recall the previous example with g of type A3 and a of type A2.

Let λ = ω1 + ω2 and c = 0, then

W0(λ) ∼=g V (ω1)⊗ V (ω2)

and

U(a⊗ C[t ]).(W0(λ))λ ∼=a V a(2ω1)⊕ V a(ω2) ∼=a W a
0 (2ω1)

On the other hand, let g be of type C3 and a be of type A1
corresponding to the positive root α1 + 2α2 + α3.
Let λ = ω2 and c = 0, then

W0(ω2) ∼=g V (ω2)

and

U(a⊗ C[t ]).(W0(ω2))ω2
∼=a V a(2ω) (a W a

0 (2ω) ∼=a V a(2ω)⊕ C.

⇒ Find sufficient criteria for restrictions being local Weyl modules
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Weyl modules and subalgebras

A pair (a, λ =
∑

m`ω`) is called local non-admissible for g if

1 either a ∼= sp2n+1, εi + εj is the unique simple short root of a
and mk 6= 0 for some i ≤ k ≤ n − 1 and i < j ,

2 or g ∼= spn, a ∼= sls+1, gεi+εj ⊂ a and there exists k ∈ I with
mk 6= 0 and ωk |h∩a is not a fundamental weight.

Theorem
Let (a, λ) be local admissible, then

U(a⊗ C[t ]).w ∼= W a
0 (λh∩a),

e.g. the highest weight component of the restricted local Weyl
module is a local Weyl module.

About the proof: Prove the theorem for fundamental weights
and then use the realization of W0(λ) as a fusion product of
fundamental Weyl modules.

Posets and tensor products Fourier 12/ 16
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Weyl modules and subalgebras

Recall the (sp3, sl2)-example:

There is no local Weyl module of weight (2m + 1)ω that can be
obtained by restriction, same for simple modules.
A pair (a, λ =

∑
m`ω`) is called global admissible for g if

m` 6= 0⇒ ω`|h∩a is a fundamental weight

Proposition

Let (a, λ) be global admissible for g. Then

Simple g⊗ C[t ]−modules of hw λ/ ∼
⇓Restriction

Simple a⊗ C[t ]−modules of hw λ|h⊗a/ ∼

is surjective.

Posets and tensor products Fourier 13/ 16
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Weyl modules and subalgebras

To each λ ∈ P+ we can associate a global Weyl module, the
integrable module of this highest weight. All local Weyl modules
are quotients.

What about the restricted module?
We need all local Weyl modules of a⊗ C[t ] as restrictions.
This leads to

Theorem
Let (a, λ) be global admissible for g, then

U(a⊗ C[t ]).w ∼= W a(λ|h∩a),

the generator-component of the restricted global Weyl module
is the global Weyl module for a⊗ C[t ].

Posets and tensor products Fourier 14/ 16
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Weyl modules and subalgebras

Outlook:

Does the restricted local Weyl module decomposes (in the local
admissible case) into a direct sum of local Weyl modules?

⇒ Necessary/sufficient conditions?

Find ”lower rank”-criteria to determine local Weyl modules!

local Weyl module for g⊗C[t ]⇔ local Weyl module for all a⊗C[t ]?

⇒ Which subalgebras are necessary/sufficient?

Posets and tensor products Fourier 15/ 16



Weyl and Sub

Weyl modules and subalgebras

Outlook:
Does the restricted local Weyl module decomposes (in the local
admissible case) into a direct sum of local Weyl modules?

⇒ Necessary/sufficient conditions?

Find ”lower rank”-criteria to determine local Weyl modules!

local Weyl module for g⊗C[t ]⇔ local Weyl module for all a⊗C[t ]?

⇒ Which subalgebras are necessary/sufficient?

Posets and tensor products Fourier 15/ 16



Weyl and Sub

Weyl modules and subalgebras

Outlook:
Does the restricted local Weyl module decomposes (in the local
admissible case) into a direct sum of local Weyl modules?

⇒ Necessary/sufficient conditions?

Find ”lower rank”-criteria to determine local Weyl modules!

local Weyl module for g⊗C[t ]⇔ local Weyl module for all a⊗C[t ]?

⇒ Which subalgebras are necessary/sufficient?

Posets and tensor products Fourier 15/ 16



Weyl and Sub

Weyl modules and subalgebras

Outlook:
Does the restricted local Weyl module decomposes (in the local
admissible case) into a direct sum of local Weyl modules?

⇒ Necessary/sufficient conditions?

Find ”lower rank”-criteria to determine local Weyl modules!

local Weyl module for g⊗C[t ]⇔ local Weyl module for all a⊗C[t ]?

⇒ Which subalgebras are necessary/sufficient?

Posets and tensor products Fourier 15/ 16



Weyl and Sub

Weyl modules and subalgebras

Outlook:
Does the restricted local Weyl module decomposes (in the local
admissible case) into a direct sum of local Weyl modules?

⇒ Necessary/sufficient conditions?

Find ”lower rank”-criteria to determine local Weyl modules!

local Weyl module for g⊗C[t ]⇔ local Weyl module for all a⊗C[t ]?

⇒ Which subalgebras are necessary/sufficient?

Posets and tensor products Fourier 15/ 16



Weyl and Sub

Weyl modules and subalgebras

Outlook:
Does the restricted local Weyl module decomposes (in the local
admissible case) into a direct sum of local Weyl modules?

⇒ Necessary/sufficient conditions?

Find ”lower rank”-criteria to determine local Weyl modules!

local Weyl module for g⊗C[t ]⇔ local Weyl module for all a⊗C[t ]?

⇒ Which subalgebras are necessary/sufficient?

Posets and tensor products Fourier 15/ 16



Weyl and Sub

Weyl modules and subalgebras

Thank you!
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