Weyl modules and subalgebras

Ghislain Fourier

Universität zu Köln

Fields Institute, March 26th, 2012 Geometric Methods in Infinite-dimensional Lie Theory

We fix

• g a simple, complex Lie algebra (classical type)

We fix

• g a simple, complex Lie algebra (classical type)

•
$$\mathfrak{g} = \mathfrak{n}^+ \oplus \mathfrak{h} \oplus \mathfrak{n}^-$$

 $V(\lambda) \leftrightarrow \lambda \in P^+.$

 $V(\lambda) \leftrightarrow \lambda \in P^+.$

 $V(\lambda)$ decomposes into h-weight space (denoted $V(\lambda)_{\mu}$)

$$V(\lambda) \leftrightarrow \lambda \in P^+.$$

 $V(\lambda)$ decomposes into h-weight space (denoted $V(\lambda)_{\mu}$)

dim
$$V(\lambda)_{\lambda} = 1$$
 and $V(\lambda) = U(\mathfrak{n}^{-}).V(\lambda)_{\lambda}$.

$$V(\lambda) \leftrightarrow \lambda \in P^+.$$

 $V(\lambda)$ decomposes into h-weight space (denoted $V(\lambda)_{\mu}$)

dim
$$V(\lambda)_{\lambda} = 1$$
 and $V(\lambda) = U(\mathfrak{n}^{-}).V(\lambda)_{\lambda}$.

Integrability condition:

$$(x_{\alpha}^{-})^{\lambda(h_{\alpha})+1}.v_{\lambda}=0$$

for $v_{\lambda} \in V(\lambda)_{\lambda}$.

Let $\mathfrak{a} \subseteq \mathfrak{g}$ a simple subalgebra, such that

$$\mathfrak{a} = (\mathfrak{a} \cap \mathfrak{n}^+) \oplus (\mathfrak{a} \cap \mathfrak{h}) \oplus (\mathfrak{a} \cap \mathfrak{n}^-)$$

is a triangular decomposition of \mathfrak{a} .

Let $\mathfrak{a} \subseteq \mathfrak{g}$ a simple subalgebra, such that

$$\mathfrak{a} = (\mathfrak{a} \cap \mathfrak{n}^+) \oplus (\mathfrak{a} \cap \mathfrak{h}) \oplus (\mathfrak{a} \cap \mathfrak{n}^-)$$

is a triangular decomposition of a. We further want compatibility for the root spaces:

$$\mathfrak{a} = \mathfrak{h} \cap \mathfrak{a} \oplus igoplus_lpha \mathfrak{g}_lpha \cap \mathfrak{a}$$

Let $\mathfrak{a} \subseteq \mathfrak{g}$ a simple subalgebra, such that

$$\mathfrak{a} = (\mathfrak{a} \cap \mathfrak{n}^+) \oplus (\mathfrak{a} \cap \mathfrak{h}) \oplus (\mathfrak{a} \cap \mathfrak{n}^-)$$

is a triangular decomposition of a. We further want compatibility for the root spaces:

$$\mathfrak{a} = \mathfrak{h} \cap \mathfrak{a} \oplus igoplus_lpha \mathfrak{g}_lpha \cap \mathfrak{a}$$

Let $\mathfrak{g} = \mathfrak{sl}_4(\mathbb{C})$ and

$$\mathfrak{a} = \left(\begin{array}{cccc} a & 0 & * & * \\ 0 & 0 & 0 & 0 \\ * & 0 & b & * \\ * & 0 & * & c \end{array}\right)$$

such that a + b + c = 0.

Let $\mathfrak{a} \subseteq \mathfrak{g}$ a simple subalgebra, such that

$$\mathfrak{a} = (\mathfrak{a} \cap \mathfrak{n}^+) \oplus (\mathfrak{a} \cap \mathfrak{h}) \oplus (\mathfrak{a} \cap \mathfrak{n}^-)$$

is a triangular decomposition of a. We further want compatibility for the root spaces:

$$\mathfrak{a} = \mathfrak{h} \cap \mathfrak{a} \oplus igoplus_lpha \mathfrak{g}_lpha \cap \mathfrak{a}$$

Let $\mathfrak{g} = \mathfrak{sl}_4(\mathbb{C})$ and

$$\mathfrak{a} = \left(\begin{array}{cccc} a & 0 & * & * \\ 0 & 0 & 0 & 0 \\ * & 0 & b & * \\ * & 0 & * & c \end{array}\right)$$

such that a + b + c = 0. Then a is of type A_2 .

$$V(\lambda) \cong_{\mathfrak{a}} \bigoplus_{\tau \in \mathcal{P}_{\mathfrak{a}}^+} V^{\mathfrak{a}}(\tau)^{m_{\lambda,\tau}}.$$

$$V(\lambda)\cong_{\mathfrak{a}} igoplus_{ au\in P^+_{\mathfrak{a}}} V^{\mathfrak{a}}(au)^{m_{\lambda, au}}.$$

Especially

$$U(\mathfrak{a}).v_{\lambda} = U(\mathfrak{a} \cap \mathfrak{n}^{-}).v_{\lambda}$$

is a simple $U(\mathfrak{a})$ -module of highest weight $\lambda|_{\mathfrak{a}\cap\mathfrak{h}}$.

$$V(\lambda)\cong_{\mathfrak{a}} igoplus_{ au\in P^+_{\mathfrak{a}}} V^{\mathfrak{a}}(au)^{m_{\lambda, au}}.$$

Especially

$$U(\mathfrak{a}).v_{\lambda} = U(\mathfrak{a} \cap \mathfrak{n}^{-}).v_{\lambda}$$

is a simple $U(\mathfrak{a})$ -module of highest weight $\lambda|_{\mathfrak{a}\cap\mathfrak{h}}$. Let $\lambda = \sum_{i=1}^{3} m_i \omega_i$

$$V(\lambda)\cong_{\mathfrak{a}} igoplus_{ au\in P^+_{\mathfrak{a}}} V^{\mathfrak{a}}(au)^{m_{\lambda, au}}.$$

Especially

$$U(\mathfrak{a}).v_{\lambda} = U(\mathfrak{a} \cap \mathfrak{n}^{-}).v_{\lambda}$$

is a simple $U(\mathfrak{a})$ -module of highest weight $\lambda|_{\mathfrak{a}\cap\mathfrak{h}}$. Let $\lambda = \sum_{i=1}^{3} m_i \omega_i$, then

$$U(\mathfrak{a}).v_{\lambda}\cong_{\mathfrak{a}}V^{\mathfrak{a}}((m_1+m_2)\omega_1^{\mathfrak{a}}+m_3\omega_2^{\mathfrak{a}})$$

Let $\mathfrak{g} \otimes \mathbb{C}[t]$ be the current algebra of \mathfrak{g} with bracket

 $[x \otimes p(t), y \otimes q(t)] := [x, y]_{\mathfrak{g}} \otimes p(t)q(t).$

Let $\mathfrak{g} \otimes \mathbb{C}[t]$ be the current algebra of \mathfrak{g} with bracket

$$[x \otimes p(t), y \otimes q(t)] := [x, y]_{\mathfrak{g}} \otimes p(t)q(t).$$

Any $c \in \mathbb{C}$ induces a map

$$\operatorname{ev}_{c}:\mathfrak{g}\otimes\mathbb{C}[t]\longrightarrow\mathfrak{g}$$
; $x\otimes
ho(t)\mapsto
ho(c)x$

Let $\mathfrak{g} \otimes \mathbb{C}[t]$ be the current algebra of \mathfrak{g} with bracket

$$[x \otimes p(t), y \otimes q(t)] := [x, y]_{\mathfrak{g}} \otimes p(t)q(t).$$

Any $c \in \mathbb{C}$ induces a map

$$\operatorname{ev}_{c}:\mathfrak{g}\otimes \mathbb{C}[t]\longrightarrow \mathfrak{g}; \ x\otimes p(t)\mapsto p(c)x$$

Let $\lambda \in P^+$, then $V(\lambda)$ can be equipped with a $\mathfrak{g} \otimes \mathbb{C}[t]$ -module structure:

Let $\mathfrak{g} \otimes \mathbb{C}[t]$ be the current algebra of \mathfrak{g} with bracket

$$[x \otimes p(t), y \otimes q(t)] := [x, y]_{\mathfrak{g}} \otimes p(t)q(t).$$

Any $c \in \mathbb{C}$ induces a map

$$\operatorname{ev}_{c}:\mathfrak{g}\otimes\mathbb{C}[t]\longrightarrow\mathfrak{g};\ x\otimes
ho(t)\mapsto
ho(c)x$$

Let $\lambda \in P^+$, then $V(\lambda)$ can be equipped with a $\mathfrak{g} \otimes \mathbb{C}[t]$ -module structure: Let $v \in V(\lambda)$

$$x \otimes p(t).v := ev_c(x \otimes p(t)).v = p(c)x.v$$

Let $\mathfrak{g} \otimes \mathbb{C}[t]$ be the current algebra of \mathfrak{g} with bracket

$$[x \otimes p(t), y \otimes q(t)] := [x, y]_{\mathfrak{g}} \otimes p(t)q(t).$$

Any $c \in \mathbb{C}$ induces a map

$$\operatorname{ev}_{c}:\mathfrak{g}\otimes\mathbb{C}[t]\longrightarrow\mathfrak{g};\ x\otimes
ho(t)\mapsto
ho(c)x$$

Let $\lambda \in P^+$, then $V(\lambda)$ can be equipped with a $\mathfrak{g} \otimes \mathbb{C}[t]$ -module structure: Let $v \in V(\lambda)$

$$x \otimes p(t).v := ev_c(x \otimes p(t)).v = p(c)x.v$$

 $ev_c(V(\lambda))$ is a simple $\mathfrak{g} \otimes \mathbb{C}[t]$ -module.

Even more, let $c_1, \ldots, c_k \in \mathbb{C}$ pairwise distinct and $\lambda_1, \ldots, \lambda_k \in P^+$

Simple modules and current algebras

Even more, let $c_1, \ldots, c_k \in \mathbb{C}$ pairwise distinct and $\lambda_1, \ldots, \lambda_k \in P^+$, then

$$V_{\underline{c}}(\underline{\lambda}) := V_{c_1}(\lambda_1) \otimes \ldots \otimes V_{c_k}(\lambda_k)$$

is a simple $\mathfrak{g} \otimes \mathbb{C}[t]/(\prod(t-c_i))$ -module, hence a simple $\mathfrak{g} \otimes \mathbb{C}[t]$ -module.

Even more, let $c_1, \ldots, c_k \in \mathbb{C}$ pairwise distinct and $\lambda_1, \ldots, \lambda_k \in P^+$, then

$$V_{\underline{c}}(\underline{\lambda}) := V_{c_1}(\lambda_1) \otimes \ldots \otimes V_{c_k}(\lambda_k)$$

is a simple $\mathfrak{g} \otimes \mathbb{C}[t]/(\prod(t-c_i))$ -module, hence a simple $\mathfrak{g} \otimes \mathbb{C}[t]$ -module.

Theorem (Chari-Pressley)

Every simple, finite-dimensional $\mathfrak{g} \otimes \mathbb{C}[t]$ -module is isomorphic to such a tensor product.

Even more, let $c_1, \ldots, c_k \in \mathbb{C}$ pairwise distinct and $\lambda_1, \ldots, \lambda_k \in P^+$, then

$$V_{\underline{c}}(\underline{\lambda}) := V_{c_1}(\lambda_1) \otimes \ldots \otimes V_{c_k}(\lambda_k)$$

is a simple $\mathfrak{g} \otimes \mathbb{C}[t]/(\prod(t-c_i))$ -module, hence a simple $\mathfrak{g} \otimes \mathbb{C}[t]$ -module.

Theorem (Chari-Pressley)

Every simple, finite-dimensional $\mathfrak{g} \otimes \mathbb{C}[t]$ -module is isomorphic to such a tensor product.

Even more, let $c_1, \ldots, c_k \in \mathbb{C}$ pairwise distinct and $\lambda_1, \ldots, \lambda_k \in P^+$, then

$$V_{\underline{c}}(\underline{\lambda}) := V_{c_1}(\lambda_1) \otimes \ldots \otimes V_{c_k}(\lambda_k)$$

is a simple $\mathfrak{g} \otimes \mathbb{C}[t]/(\prod(t-c_i))$ -module, hence a simple $\mathfrak{g} \otimes \mathbb{C}[t]$ -module.

Theorem (Chari-Pressley)

Every simple, finite-dimensional $\mathfrak{g} \otimes \mathbb{C}[t]$ -module is isomorphic to such a tensor product.

We have further for $h \otimes p(t) \in \mathfrak{h} \otimes \mathbb{C}[t]$:

$$h \otimes p(t).v_{\lambda_1} \otimes \ldots \otimes v_{\lambda_k} = \left(\sum_{i=1}^k \lambda_i(h)p(c_i)\right)v_{\lambda_1} \otimes \ldots \otimes v_{\lambda_k}$$

Let a as before, and we consider the restriction of $V_{\underline{c}}(\underline{\lambda})$ to $\mathfrak{a} \otimes \mathbb{C}[t]$. Again, the operation factors through $\mathfrak{a} \otimes (\prod (t - c_i))$

Again, the operation factors through $\mathfrak{a} \otimes (\prod (t - c_i))$, hence the restricted module is a module for

$$\mathfrak{a}\otimes \mathbb{C}[t]/(\prod(t-c_i))\cong \bigoplus \mathfrak{a}\otimes \mathbb{C}[t]/(t-c_i).$$

Again, the operation factors through $\mathfrak{a} \otimes (\prod (t - c_i))$, hence the restricted module is a module for

$$\mathfrak{a}\otimes\mathbb{C}[t]/(\prod(t-c_i))\cong\bigoplus\mathfrak{a}\otimes\mathbb{C}[t]/(t-c_i).$$

This leads to

Proposition

 $V_{\underline{c}}(\underline{\lambda})$ decomposes as a $\mathfrak{a} \otimes \mathbb{C}[t]$ -module into a direct sum of simple $\mathfrak{a} \otimes \mathbb{C}[t]$ -modules.

Again, the operation factors through $\mathfrak{a} \otimes (\prod (t - c_i))$, hence the restricted module is a module for

$$\mathfrak{a}\otimes\mathbb{C}[t]/(\prod(t-c_i))\cong\bigoplus\mathfrak{a}\otimes\mathbb{C}[t]/(t-c_i).$$

This leads to

Proposition

 $V_{\underline{c}}(\underline{\lambda})$ decomposes as a $\mathfrak{a} \otimes \mathbb{C}[t]$ -module into a direct sum of simple $\mathfrak{a} \otimes \mathbb{C}[t]$ -modules.

Again, the operation factors through $\mathfrak{a} \otimes (\prod (t - c_i))$, hence the restricted module is a module for

$$\mathfrak{a}\otimes\mathbb{C}[t]/(\prod(t-c_i))\cong\bigoplus\mathfrak{a}\otimes\mathbb{C}[t]/(t-c_i).$$

This leads to

Proposition

 $V_{\underline{c}}(\underline{\lambda})$ decomposes as a $\mathfrak{a} \otimes \mathbb{C}[t]$ -module into a direct sum of simple $\mathfrak{a} \otimes \mathbb{C}[t]$ -modules.

Knowing $m_{\lambda_i,\tau}$

Again, the operation factors through $\mathfrak{a} \otimes (\prod (t - c_i))$, hence the restricted module is a module for

$$\mathfrak{a}\otimes\mathbb{C}[t]/(\prod(t-c_i))\cong\bigoplus\mathfrak{a}\otimes\mathbb{C}[t]/(t-c_i).$$

This leads to

Proposition

 $V_{\underline{c}}(\underline{\lambda})$ decomposes as a $\mathfrak{a} \otimes \mathbb{C}[t]$ -module into a direct sum of simple $\mathfrak{a} \otimes \mathbb{C}[t]$ -modules.

Knowing $m_{\lambda_i,\tau} \implies$ decomposition formula for $V_{\underline{c}}(\underline{\lambda})$

Again, the operation factors through $\mathfrak{a} \otimes (\prod (t - c_i))$, hence the restricted module is a module for

$$\mathfrak{a}\otimes\mathbb{C}[t]/(\prod(t-c_i))\cong\bigoplus\mathfrak{a}\otimes\mathbb{C}[t]/(t-c_i).$$

This leads to

Proposition

 $V_{\underline{c}}(\underline{\lambda})$ decomposes as a $\mathfrak{a} \otimes \mathbb{C}[t]$ -module into a direct sum of simple $\mathfrak{a} \otimes \mathbb{C}[t]$ -modules.

Knowing $m_{\lambda_{i},\tau} \Longrightarrow$ decomposition formula for $V_{\underline{c}}(\underline{\lambda})$ Note that

$$U(\mathfrak{a}\otimes\mathbb{C}[t]).v_{\lambda_1}\otimes\ldots\otimes v_{\lambda_k}$$

is a simple $\mathfrak{a} \otimes \mathbb{C}[t]$ -module.

We turn to Weyl modules:

We turn to Weyl modules:

• To $V_{\underline{c}}(\underline{\lambda})$ we associate a "largest" integrable module $W_{\underline{c}}(\underline{\lambda})$.
• To $V_{\underline{c}}(\underline{\lambda})$ we associate a "largest" integrable module $W_{\underline{c}}(\underline{\lambda})$.

- To $V_{\underline{c}}(\underline{\lambda})$ we associate a "largest" integrable module $W_{\underline{c}}(\underline{\lambda})$.
- *W_c(<u>λ</u>)* is generated through a highest weight vector *w*, s.t. h ⊗ ℂ[*t*] acts by evaluation (as before) on *w*.

- To $V_{\underline{c}}(\underline{\lambda})$ we associate a "largest" integrable module $W_{\underline{c}}(\underline{\lambda})$.
- *W_c(<u>λ</u>)* is generated through a highest weight vector *w*, s.t. h ⊗ ℂ[*t*] acts by evaluation (as before) on *w*.

- To $V_{\underline{c}}(\underline{\lambda})$ we associate a "largest" integrable module $W_{\underline{c}}(\underline{\lambda})$.
- *W_c(<u>λ</u>)* is generated through a highest weight vector *w*, s.t. h ⊗ ℂ[*t*] acts by evaluation (as before) on *w*.
- $W_{\underline{c}}(\underline{\lambda})$ is a module for

$$\mathfrak{g}\otimes \mathbb{C}[t]/\prod (t-c_i)^{n_i}$$

for some n_i

- To $V_{\underline{c}}(\underline{\lambda})$ we associate a "largest" integrable module $W_{\underline{c}}(\underline{\lambda})$.
- *W_c(<u>λ</u>)* is generated through a highest weight vector *w*, s.t. h ⊗ ℂ[*t*] acts by evaluation (as before) on *w*.
- $W_{\underline{c}}(\underline{\lambda})$ is a module for

$$\mathfrak{g}\otimes \mathbb{C}[t]/\prod (t-c_i)^{n_i}$$

for some n_i

- To $V_{\underline{c}}(\underline{\lambda})$ we associate a "largest" integrable module $W_{\underline{c}}(\underline{\lambda})$.
- *W_c(<u>λ</u>)* is generated through a highest weight vector *w*, s.t. h ⊗ ℂ[*t*] acts by evaluation (as before) on *w*.
- $W_{\underline{c}}(\underline{\lambda})$ is a module for

$$\mathfrak{g}\otimes \mathbb{C}[t]/\prod (t-c_i)^{n_i}$$

for some $n_i \Longrightarrow$ not a semi-simple Lie algebra.

- To $V_{\underline{c}}(\underline{\lambda})$ we associate a "largest" integrable module $W_{\underline{c}}(\underline{\lambda})$.
- *W_c(<u>λ</u>)* is generated through a highest weight vector *w*, s.t. h ⊗ ℂ[*t*] acts by evaluation (as before) on *w*.
- W_c(<u>\(\lambda\)</u>) is a module for

$$\mathfrak{g}\otimes \mathbb{C}[t]/\prod (t-c_i)^{n_i}$$

for some $n_i \Longrightarrow$ not a semi-simple Lie algebra.

• These local Weyl modules are finite-dimensional.

Theorem (Chari-Pressley)

$$W_{\underline{c}}(\underline{\lambda}) \cong W_{c_1}(\lambda_1) \otimes \ldots \otimes W_{c_k}(\lambda_k)$$

Theorem (Chari-Pressley)

$$W_{\underline{c}}(\underline{\lambda}) \cong W_{c_1}(\lambda_1) \otimes \ldots \otimes W_{c_k}(\lambda_k)$$

Theorem (Chari-Pressley)

$$W_{\underline{c}}(\underline{\lambda}) \cong W_{c_1}(\lambda_1) \otimes \ldots \otimes W_{c_k}(\lambda_k)$$

The g-decomposition of $W_c(\lambda)$ is isomorphic to the tensor product of "fundamental" Weyl modules.

Theorem (Chari-Pressley)

$$W_{\underline{c}}(\underline{\lambda}) \cong W_{c_1}(\lambda_1) \otimes \ldots \otimes W_{c_k}(\lambda_k)$$

The g-decomposition of $W_c(\lambda)$ is isomorphic to the tensor product of "fundamental" Weyl modules.

The g-decomposition of these fundamental Weyl modules is known due to Chari and Kleber.

Recall the previous example with g of type A_3 and a of type A_2 .

Recall the previous example with g of type A_3 and a of type A_2 . Let $\lambda = \omega_1 + \omega_2$ and c = 0, then

 $W_0(\lambda) \cong_{\mathfrak{g}} V(\omega_1) \otimes V(\omega_2)$

Recall the previous example with \mathfrak{g} of type A_3 and \mathfrak{a} of type A_2 . Let $\lambda = \omega_1 + \omega_2$ and c = 0, then

$$W_0(\lambda) \cong_{\mathfrak{g}} V(\omega_1) \otimes V(\omega_2)$$

and

 $U(\mathfrak{a}\otimes\mathbb{C}[t]).(W_0(\lambda))_{\lambda}\cong_{\mathfrak{a}}V^{\mathfrak{a}}(2\omega_1)\oplus V^{\mathfrak{a}}(\omega_2)\cong_{\mathfrak{a}}W_0^{\mathfrak{a}}(2\omega_1)$

Recall the previous example with \mathfrak{g} of type A_3 and \mathfrak{a} of type A_2 . Let $\lambda = \omega_1 + \omega_2$ and c = 0, then

$$W_0(\lambda) \cong_{\mathfrak{g}} V(\omega_1) \otimes V(\omega_2)$$

and

 $U(\mathfrak{a}\otimes\mathbb{C}[t]).(W_0(\lambda))_{\lambda}\cong_{\mathfrak{a}}V^{\mathfrak{a}}(2\omega_1)\oplus V^{\mathfrak{a}}(\omega_2)\cong_{\mathfrak{a}}W_0^{\mathfrak{a}}(2\omega_1)$

On the other hand, let \mathfrak{g} be of type C_3 and \mathfrak{a} be of type A_1 corresponding to the positive root $\alpha_1 + 2\alpha_2 + \alpha_3$.

Recall the previous example with \mathfrak{g} of type A_3 and \mathfrak{a} of type A_2 . Let $\lambda = \omega_1 + \omega_2$ and c = 0, then

$$W_0(\lambda) \cong_{\mathfrak{g}} V(\omega_1) \otimes V(\omega_2)$$

and

 $U(\mathfrak{a}\otimes\mathbb{C}[t]).(W_0(\lambda))_{\lambda}\cong_{\mathfrak{a}} V^{\mathfrak{a}}(2\omega_1)\oplus V^{\mathfrak{a}}(\omega_2)\cong_{\mathfrak{a}} W_0^{\mathfrak{a}}(2\omega_1)$

On the other hand, let \mathfrak{g} be of type C_3 and \mathfrak{a} be of type A_1 corresponding to the positive root $\alpha_1 + 2\alpha_2 + \alpha_3$. Let $\lambda = \omega_2$ and c = 0, then

$$W_0(\omega_2) \cong_{\mathfrak{g}} V(\omega_2)$$

and

$$U(\mathfrak{a}\otimes \mathbb{C}[t]).(W_0(\omega_2))_{\omega_2}\cong_{\mathfrak{a}} V^{\mathfrak{a}}(2\omega)\subsetneq_{\mathfrak{a}} W_0^{\mathfrak{a}}(2\omega)\cong_{\mathfrak{a}} V^{\mathfrak{a}}(2\omega)\oplus\mathbb{C}.$$

Recall the previous example with \mathfrak{g} of type A_3 and \mathfrak{a} of type A_2 . Let $\lambda = \omega_1 + \omega_2$ and c = 0, then

$$W_0(\lambda) \cong_{\mathfrak{g}} V(\omega_1) \otimes V(\omega_2)$$

and

 $U(\mathfrak{a}\otimes\mathbb{C}[t]).(W_0(\lambda))_{\lambda}\cong_{\mathfrak{a}} V^{\mathfrak{a}}(2\omega_1)\oplus V^{\mathfrak{a}}(\omega_2)\cong_{\mathfrak{a}} W_0^{\mathfrak{a}}(2\omega_1)$

On the other hand, let \mathfrak{g} be of type C_3 and \mathfrak{a} be of type A_1 corresponding to the positive root $\alpha_1 + 2\alpha_2 + \alpha_3$. Let $\lambda = \omega_2$ and c = 0, then

$$W_0(\omega_2) \cong_{\mathfrak{g}} V(\omega_2)$$

and

$$U(\mathfrak{a}\otimes \mathbb{C}[t]).(W_0(\omega_2))_{\omega_2}\cong_\mathfrak{a} V^\mathfrak{a}(2\omega)\subsetneq_\mathfrak{a} W_0^\mathfrak{a}(2\omega)\cong_\mathfrak{a} V^\mathfrak{a}(2\omega)\oplus\mathbb{C}.$$

\Rightarrow Find sufficient criteria for restrictions being local Weyl modules

A pair $(\mathfrak{a},\lambda=\sum m_\ell\omega_\ell)$ is called *local non-admissible* for \mathfrak{g} if

A pair $(\mathfrak{a}, \lambda = \sum m_{\ell} \omega_{\ell})$ is called *local non-admissible* for \mathfrak{g} if

• either $\mathfrak{a} \cong \mathfrak{sp}_{2n+1}$, $\epsilon_i + \epsilon_j$ is the unique simple short root of \mathfrak{a} and $m_k \neq 0$ for some $i \leq k \leq n-1$ and i < j,

A pair ($\mathfrak{a},\lambda=\sum m_\ell\omega_\ell)$ is called *local non-admissible* for \mathfrak{g} if

- either $\mathfrak{a} \cong \mathfrak{sp}_{2n+1}$, $\epsilon_i + \epsilon_j$ is the unique simple short root of \mathfrak{a} and $m_k \neq 0$ for some $i \leq k \leq n-1$ and i < j,
- 2 or $\mathfrak{g} \cong \mathfrak{sp}_n$, $\mathfrak{a} \cong \mathfrak{sl}_{s+1}$, $\mathfrak{g}_{\epsilon_i + \epsilon_j} \subset \mathfrak{a}$ and there exists $k \in I$ with $m_k \neq 0$ and $\omega_k|_{\mathfrak{h} \cap \mathfrak{a}}$ is not a fundamental weight.

A pair ($\mathfrak{a},\lambda=\sum \textit{m}_{\ell}\omega_{\ell})$ is called *local non-admissible* for \mathfrak{g} if

- either $\mathfrak{a} \cong \mathfrak{sp}_{2n+1}$, $\epsilon_i + \epsilon_j$ is the unique simple short root of \mathfrak{a} and $m_k \neq 0$ for some $i \leq k \leq n-1$ and i < j,
- 2 or $\mathfrak{g} \cong \mathfrak{sp}_n$, $\mathfrak{a} \cong \mathfrak{sl}_{s+1}$, $\mathfrak{g}_{\epsilon_i + \epsilon_j} \subset \mathfrak{a}$ and there exists $k \in I$ with $m_k \neq 0$ and $\omega_k|_{\mathfrak{h} \cap \mathfrak{a}}$ is not a fundamental weight.

Theorem

Let (\mathfrak{a}, λ) be local admissible, then

$$U(\mathfrak{a}\otimes \mathbb{C}[t]).w\cong W^{\mathfrak{a}}_{0}(\lambda_{\mathfrak{h}\cap\mathfrak{a}}),$$

e.g. the highest weight component of the restricted local Weyl module is a local Weyl module.

A pair ($\mathfrak{a},\lambda=\sum \textit{m}_{\ell}\omega_{\ell})$ is called *local non-admissible* for \mathfrak{g} if

- either $\mathfrak{a} \cong \mathfrak{sp}_{2n+1}$, $\epsilon_i + \epsilon_j$ is the unique simple short root of \mathfrak{a} and $m_k \neq 0$ for some $i \leq k \leq n-1$ and i < j,
- 2 or $\mathfrak{g} \cong \mathfrak{sp}_n$, $\mathfrak{a} \cong \mathfrak{sl}_{s+1}$, $\mathfrak{g}_{\epsilon_i + \epsilon_j} \subset \mathfrak{a}$ and there exists $k \in I$ with $m_k \neq 0$ and $\omega_k|_{\mathfrak{h} \cap \mathfrak{a}}$ is not a fundamental weight.

Theorem

Let (\mathfrak{a}, λ) be local admissible, then

$$U(\mathfrak{a}\otimes \mathbb{C}[t]).w\cong W^{\mathfrak{a}}_{0}(\lambda_{\mathfrak{h}\cap\mathfrak{a}}),$$

e.g. the highest weight component of the restricted local Weyl module is a local Weyl module.

A pair ($\mathfrak{a},\lambda=\sum \textit{m}_{\ell}\omega_{\ell})$ is called *local non-admissible* for \mathfrak{g} if

- either $\mathfrak{a} \cong \mathfrak{sp}_{2n+1}$, $\epsilon_i + \epsilon_j$ is the unique simple short root of \mathfrak{a} and $m_k \neq 0$ for some $i \leq k \leq n-1$ and i < j,
- 2 or $\mathfrak{g} \cong \mathfrak{sp}_n$, $\mathfrak{a} \cong \mathfrak{sl}_{s+1}$, $\mathfrak{g}_{\epsilon_i + \epsilon_j} \subset \mathfrak{a}$ and there exists $k \in I$ with $m_k \neq 0$ and $\omega_k|_{\mathfrak{h} \cap \mathfrak{a}}$ is not a fundamental weight.

Theorem

Let (\mathfrak{a}, λ) be local admissible, then

```
U(\mathfrak{a}\otimes\mathbb{C}[t]).w\cong W^{\mathfrak{a}}_{0}(\lambda_{\mathfrak{h}\cap\mathfrak{a}}),
```

e.g. the highest weight component of the restricted local Weyl module is a local Weyl module.

About the proof:

A pair ($\mathfrak{a},\lambda=\sum m_\ell\omega_\ell)$ is called *local non-admissible* for \mathfrak{g} if

- either $\mathfrak{a} \cong \mathfrak{sp}_{2n+1}$, $\epsilon_i + \epsilon_j$ is the unique simple short root of \mathfrak{a} and $m_k \neq 0$ for some $i \leq k \leq n-1$ and i < j,
- 2 or $\mathfrak{g} \cong \mathfrak{sp}_n$, $\mathfrak{a} \cong \mathfrak{sl}_{s+1}$, $\mathfrak{g}_{\epsilon_i + \epsilon_j} \subset \mathfrak{a}$ and there exists $k \in I$ with $m_k \neq 0$ and $\omega_k|_{\mathfrak{h} \cap \mathfrak{a}}$ is not a fundamental weight.

Theorem

Let (a, λ) be local admissible, then

 $U(\mathfrak{a}\otimes\mathbb{C}[t]).w\cong W^{\mathfrak{a}}_{0}(\lambda_{\mathfrak{h}\cap\mathfrak{a}}),$

e.g. the highest weight component of the restricted local Weyl module is a local Weyl module.

About the proof: Prove the theorem for fundamental weights

A pair ($\mathfrak{a},\lambda=\sum m_\ell\omega_\ell)$ is called *local non-admissible* for \mathfrak{g} if

- either $\mathfrak{a} \cong \mathfrak{sp}_{2n+1}$, $\epsilon_i + \epsilon_j$ is the unique simple short root of \mathfrak{a} and $m_k \neq 0$ for some $i \leq k \leq n-1$ and i < j,
- 2 or $\mathfrak{g} \cong \mathfrak{sp}_n$, $\mathfrak{a} \cong \mathfrak{sl}_{s+1}$, $\mathfrak{g}_{\epsilon_i + \epsilon_j} \subset \mathfrak{a}$ and there exists $k \in I$ with $m_k \neq 0$ and $\omega_k|_{\mathfrak{h} \cap \mathfrak{a}}$ is not a fundamental weight.

Theorem

Let (a, λ) be local admissible, then

```
U(\mathfrak{a}\otimes\mathbb{C}[t]).w\cong W^{\mathfrak{a}}_{0}(\lambda_{\mathfrak{h}\cap\mathfrak{a}}),
```

e.g. the highest weight component of the restricted local Weyl module is a local Weyl module.

About the proof: Prove the theorem for fundamental weights and then use the realization of $W_0(\lambda)$ as a fusion product of fundamental Weyl modules.

Posets and tensor products

Recall the $(\mathfrak{sp}_3, \mathfrak{sl}_2)$ -example:

Recall the $(\mathfrak{sp}_3, \mathfrak{sl}_2)$ -example: There is no local Weyl module of weight $(2m + 1)\omega$ that can be obtained by restriction, Recall the $(\mathfrak{sp}_3, \mathfrak{sl}_2)$ -example:

There is no local Weyl module of weight $(2m + 1)\omega$ that can be obtained by restriction, same for simple modules.

Recall the $(\mathfrak{sp}_3, \mathfrak{sl}_2)$ -example:

There is no local Weyl module of weight $(2m + 1)\omega$ that can be obtained by restriction, same for simple modules.

A pair $(\mathfrak{a}, \lambda = \sum m_{\ell} \omega_{\ell})$ is called *global admissible* for \mathfrak{g} if

 $m_\ell
eq 0 \Rightarrow \omega_\ell|_{\mathfrak{h} \cap \mathfrak{a}}$ is a fundamental weight

Recall the $(\mathfrak{sp}_3, \mathfrak{sl}_2)$ -example:

There is no local Weyl module of weight $(2m + 1)\omega$ that can be obtained by restriction, same for simple modules.

A pair $(\mathfrak{a}, \lambda = \sum m_\ell \omega_\ell)$ is called *global admissible* for \mathfrak{g} if

 $m_\ell
eq 0 \Rightarrow \omega_\ell|_{\mathfrak{h} \cap \mathfrak{a}}$ is a fundamental weight

Proposition

Let (\mathfrak{a}, λ) be global admissible for \mathfrak{g} . Then

is surjective.

What about the restricted module?

What about the restricted module?

We need all local Weyl modules of $\mathfrak{a} \otimes \mathbb{C}[t]$ as restrictions.

What about the restricted module?

We need all local Weyl modules of $\mathfrak{a} \otimes \mathbb{C}[t]$ as restrictions.

This leads to

Theorem

Let (\mathfrak{a}, λ) be global admissible for \mathfrak{g} , then

 $U(\mathfrak{a}\otimes\mathbb{C}[t]).w\cong W^{\mathfrak{a}}(\lambda|_{\mathfrak{h}\cap\mathfrak{a}}),$

the generator-component of the restricted global Weyl module is the global Weyl module for $\mathfrak{a} \otimes \mathbb{C}[t]$.

Outlook:

Does the restricted local Weyl module decomposes (in the local admissible case) into a direct sum of local Weyl modules?

Does the restricted local Weyl module decomposes (in the local admissible case) into a direct sum of local Weyl modules?

 \Rightarrow Necessary/sufficient conditions?

Does the restricted local Weyl module decomposes (in the local admissible case) into a direct sum of local Weyl modules?

 \Rightarrow Necessary/sufficient conditions?

Find "lower rank"-criteria to determine local Weyl modules!

Does the restricted local Weyl module decomposes (in the local admissible case) into a direct sum of local Weyl modules?

 \Rightarrow Necessary/sufficient conditions?

Find "lower rank"-criteria to determine local Weyl modules!

local Weyl module for $\mathfrak{g} \otimes \mathbb{C}[t] \Leftrightarrow$ local Weyl module for all $\mathfrak{a} \otimes \mathbb{C}[t]$?

Does the restricted local Weyl module decomposes (in the local admissible case) into a direct sum of local Weyl modules?

 \Rightarrow Necessary/sufficient conditions?

Find "lower rank"-criteria to determine local Weyl modules!

local Weyl module for $\mathfrak{g} \otimes \mathbb{C}[t] \Leftrightarrow$ local Weyl module for all $\mathfrak{a} \otimes \mathbb{C}[t]$?

 \Rightarrow Which subalgebras are necessary/sufficient?

Thank you!