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Simple, finite-dimensional g-modules are parametrized by
dominant integral weights

V(A) < A e PT.
V(X) decomposes into h-weight space (denoted V(\),)
dim V(A)x=1and V(\) = U(n™).V(N)a.

Integrability condition:

for vy € V(A)a.
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Let a C g a simple subalgebra, such that
a=(annt)@(anph)@(ann’)

is a triangular decomposition of a.
We further want compatibility for the root spaces:

a:bﬁa@@gaﬁa
o

Let g = sl4(C) and

* ¥ O
O O OO
* O O %
O * O %

such that a+ b+ ¢ = 0. Then a is of type As.
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Simple modules and subalgebras

Any V() decomposes into a direct sum of simple a-modules
V(A = @ Vo)™
TEPT

Especially
U(a).vy =U(ann).vy

is a simple U(a)-module of highest weight A|4p.
Let A = 32 . mw; , then

U(a).va =a V(M + mp)w§ + Maws)
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Simple modules and current algebras

Changing the Lie algebras:
Let g ® C[t] be the current algebra of g with bracket

[x @ p(t), y @ q(t)] := [x, ylg @ p(t)q(1)-
Any ¢ € C induces a map
eve: g C[t] — g; x® p(t) — p(c)x

Let A € P*, then V()) can be equipped with a g ® C[{]-module
structure: Let v € V()

X ® p(t).v:=eve(x @ p(t).v=p(c)x.v

eve(V(N)) is a simple g ® C[f]-module.
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Simple modules and current algebras

Even more, let ¢4, ..., cx € C pairwise distinct and
M, ..., Ak € PT ,then

Ve(A) i= Vi, (M) ® ... ® Vi (k)

is a simple g ® C[t]/(][(t — ¢;))-module, hence a simple
g ® C[t]-module.

Theorem (Chari-Pressley)

Every simple, finite-dimensional g ® C[t]-module is isomorphic
to such a tensor product.

We have further for h® p(t) € h @ C[{]:
h® p(t).vy, ® .®vAk:<ZA (h)p( c,)v,\1 SRV,
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Simple modules and current algebras

Let a as before, and we consider the restriction of V() to

a® C[t].

Again, the operation factors through a ® (J](f — ¢;)), hence the
restricted module is a module for

ae C[t]/(J[(t-c)) = axClt/(t - c).

This leads to

Proposition

Ve(A) decomposes as a a @ C[t]-module into a direct sum of
simple a ® C[t]-modules.

Knowing my, - = decomposition formula for V¢())
Note that
U(axClf]).vy, ®...® Vy,
is a simple a ® C[t]-module.
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Weyl modules and subalgebras

We turn to Weyl modules:

@ To V,()) we associate a "largest” integrable module W, ().

@ W;()) is generated through a highest weight vector w, s.t.
h @ C[t] acts by evaluation (as before) on w.

@ Wc()) is a module for

g®ClA/[J(t—c)"

for some nj = not a semi-simple Lie algebra.
@ These local Weyl modules are finite-dimensional.
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Weyl modules and subalgebras

Theorem (Chari-Pressley)

We(d) = We, (M) ® ... ® W, (\e)

The g-decomposition of W,(\) is isomorphic to the tensor
product of "fundamental” Weyl modules.

The g-decomposition of these fundamental Weyl modules is
known due to Chari and Kleber.

Posets and tensor products Fourier 10/ 16
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Weyl modules and subalgebras

Recall the previous example with g of type Az and a of type A..
Let A = w1 +ws and ¢ = 0, then

Wo(A) =5 V(wr) @ V(w2)
and
U(a @ C[t]).(Wo(M)x Za V*(2w1) ® V(w2) =a Wy (2w1)

On the other hand, let g be of type Cs and a be of type A,
corresponding to the positive root ay + 2a0 + as.
Let A = ws and ¢ = 0, then

Wo(w2) =4 V(w2)
and
U(a @ C[t]).(Wo(w2))w, =a V*(2w) Ca W (2w) =, V(2w) @ C.

= Find sulfficient criteria for restrictions being local Weyl modules
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Weyl modules and subalgebras

A pair (a, A = >_ mywy) is called local non-admissible for g if
@ ecither a = spy,, 4, € + ¢ is the unique simple short root of a
and mg #0forsomei< k<n-—1andi<j,
Q org>sp,, asls,q, ge+¢; C a and there exists k € / with
my # 0 and wk|pnq IS NOt a fundamental weight.

Theorem
Let (a, \) be local admissible, then

U(a® C[f]).w = W3 (Asna),

e.g. the highest weight component of the restricted local Weyl!
moalule is a local Weyl module.

About the proof: Prove the theorem for fundamental weights
and then use the realization of Wy(\) as a fusion product of
fundamental Weyl modules.

Posets and tensor products Fourier 12/ 16
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Weyl modules and subalgebras

Recall the (sps, sl>)-example:

There is no local Weyl module of weight (2m + 1)w that can be
obtained by restriction, same for simple modules.

A pair (a, A = >_ mywy) is called global admissible for g if

me # 0 = wy|yna is @ fundamental weight

Proposition
Let (a, \) be global admissible for g. Then

Simple g ® C[t] — modules of hw \/ ~

@Restriction

Simple a ® C[t] — modules of hw A|ygq/ ~

is surjective.

Posets and tensor products Fourier 13/ 16
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Weyl modules and subalgebras

To each A € P we can associate a global Weyl module, the
integrable module of this highest weight. All local Weyl modules
are quotients.

What about the restricted module?

We need all local Weyl modules of a ® C[t] as restrictions.

This leads to

Theorem
Let (a, \) be global admissible for g, then

U(a @ C[f]).w = W*(A|pna),

the generator-component of the restricted global Weyl module
is the global Weyl module for a @ C[t].

Posets and tensor products Fourier 14/ 16
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Weyl modules and subalgebras

Outlook:
Does the restricted local Weyl module decomposes (in the local
admissible case) into a direct sum of local Weyl modules?
= Necessary/sufficient conditions?
Find "lower rank”-criteria to determine local Weyl modules!

local Weyl module for goC[f] < local Weyl module for all a®C|[t]?

= Which subalgebras are necessary/sufficient?
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Weyl modules and subalgebras

Thank you!
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