Discovering Hidden Repetitions

Florin Manea?
Joint work with Pawet Gawrychowski?, Robert Mercas®, Dirk Nowotka?

2Christian-Albrechts-Universitat zu Kiel
bMax-Planck-Institute fiir Informatik Saarbriicken
€Otto-von-Guericke-Universitat Magdeburg

Toronto, April 2013

F. Manea Hidden Repetitions Toronto, April 2013

Pseudo-repetitions

A word w is

@ repetition: w = t", for some proper prefix t (called root)
primitive word: not a repetition.

o f-repetition: w € t{t, f(t)}*, for some proper prefix t (called root)
f-primitive word: not an f-repetition.

F. Manea Hidden Repetitions Toronto, April 2013 1

Pseudo-repetitions

A word w is

@ repetition: w = t", for some proper prefix t (called root)
primitive word: not a repetition.

o f-repetition: w € t{t, f(t)}*, for some proper prefix t (called root)
f-primitive word: not an f-repetition.

ACGTAC

o primitive from the classical point of view

v,

F. Manea Hidden Repetitions Toronto, April 2013 1

Pseudo-repetitions

A word w is

@ repetition: w = t", for some proper prefix t (called root)
primitive word: not a repetition.

o f-repetition: w € t{t, f(t)}*, for some proper prefix t (called root)
f-primitive word: not an f-repetition.

ACGTAC

o primitive from the classical point of view
o f-primitive for morphism f with f(A) =T, f(C) =G

v,

F. Manea Hidden Repetitions Toronto, April 2013 1

Pseudo-repetitions

A word w is

@ repetition: w = t", for some proper prefix t (called root)
primitive word: not a repetition.

o f-repetition: w € t{t, f(t)}*, for some proper prefix t (called root)
f-primitive word: not an f-repetition.

ACGTAC

o primitive from the classical point of view
o f-primitive for morphism f with f(A) =T, f(C) =G
o f-power for antimorphism f with f(A) =T, f(C) = G:

ACGTAC = AC - f(AC) - AC

v,

F. Manea Hidden Repetitions Toronto, April 2013 1

Why Pseudo-repetitions?

Repetitions: central in combinatorics on words and applications!

F. Manea Hidden Repetitions Toronto, April 2013 2

Why Pseudo-repetitions?

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.]
Originated from computational biology:

— Watson-Crick complement: an antimorphic involution

— a single-stranded DNA and its complement encode the same information.

F. Manea Hidden Repetitions Toronto, April 2013 2

Why Pseudo-repetitions?

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.]

Originated from computational biology:
— Watson-Crick complement: an antimorphic involution
— a single-stranded DNA and its complement encode the same information.

Generally: strings with intrinsic (yet, hidden) repetitive structure.

F. Manea Hidden Repetitions Toronto, April 2013 2

Why Pseudo-repetitions?

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.]
Originated from computational biology:

— Watson-Crick complement: an antimorphic involution

— a single-stranded DNA and its complement encode the same information.

Generally: strings with intrinsic (yet, hidden) repetitive structure.
Such structures appear also in music: ternary song form.

F. Manea Hidden Repetitions Toronto, April 2013 2

Why Pseudo-repetitions?

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.]
Originated from computational biology:

— Watson-Crick complement: an antimorphic involution

— a single-stranded DNA and its complement encode the same information.

Generally: strings with intrinsic (yet, hidden) repetitive structure.
Such structures appear also in music: ternary song form.

[Kari, Seki. An improved bound for an extension of Fine and Wilf theorem, and
its optimality. Fundam. Informat. 2010.]

[Chiniforooshan, Kari, Xu. Pseudopower avoidance. Fundam. Informat., 2012]
[Blondin Massé, Gaboury, Hallé. Pseudoperiodic words. DLT 2012]

[M., Miiller, Nowotka. The avoidability of cubes under permutations. DLT 2012.]
[M., Mercas, Nowotka. F & W theorem and pseudo-repetitions. MFCS 2012.]
[Gawrychowski, M., Mercas, Nowotka, Tiseanu. Finding Pseudo-Repetitions.
STACS 2013/]

[Gawrychowski, M., Nowotka. Discovering Hidden Repetitions. CiE 2013.]

F. Manea Hidden Repetitions Toronto, April 2013 2

Finding Pseudo-repetitions

Given w € V* and f, decide whether this word is an f-repetition.

F. Manea Hidden Repetitions Toronto, April 2013 2

Finding Pseudo-repetitions

Problem

Given w € V* and f, decide whether this word is an f-repetition.

Problem

Given w € VT, decide whether there exists an f : V¥ — V* and a prefix t
of w such that w € t{t, f(t)}T.

F. Manea Hidden Repetitions Toronto, April 2013 8

Finding Pseudo-repetitions

Given w € V* and f, decide whether this word is an f-repetition.

Given w € VT, decide whether there exists an f : V¥ — V* and a prefix t
of w such that w € t{t, f(t)}.

A\,

Problem

Given a word w € V* and f,

(1) Enumerate all (i,j,¢), 1 <i,j,¢<|w
wli.j] € {t, f(£)}".

(2) Given k, enumerate all (i,j), 1 <i,j <|w
wli..j] € {t, f(£)}¥.

, such that there exists t with

, so there exists t with

v,

F. Manea Hidden Repetitions Toronto, April 2013 8

Basic tools

Computational model: RAM with logarithmic word size.
A word u, with |u| = n, over |V| € O(n°).

Build in linear time:
— suffix array data structure for u;
— data structures allowing us to answer in O(1) queries:

“How long is the longest common prefix of u[i..n] and u[j..n]?", denoted
LCPref ,(i,j).

F. Manea Hidden Repetitions Toronto, April 2013 4

Basic tools

Computational model: RAM with logarithmic word size.
A word u, with |u| = n, over |V| € O(n°).

Build in linear time:
— suffix array data structure for u;
— data structures allowing us to answer in O(1) queries:

“How long is the longest common prefix of u[i..n] and u[j..n]?", denoted
LCPref ,(i,j).

In our case:

@ w is the input word,
e f a fixed anti-/morphism,
o u=wf(w), |ul € O(|w]).

F. Manea Hidden Repetitions Toronto, April 2013 4

Basic tools

Computational model: RAM with logarithmic word size.
A word u, with |u| = n, over |V| € O(n°).

Build in linear time:
— suffix array data structure for u;
— data structures allowing us to answer in O(1) queries:

“How long is the longest common prefix of u[i..n] and u[j..n]?", denoted
LCPref ,(i,j).

In our case:

@ w is the input word,

e f a fixed anti-/morphism,

o u=wf(w), |ul € O(|w]).

e Constant time: does w[i..j] / f(w][i..j]) occur at position s in w?

F. Manea Hidden Repetitions Toronto, April 2013 4

Basic tool: Fine and Wilf Theorem

[Fine, Wilf: Uniqueness theorem for periodic functions (1965).]

If o € u{u,v}* and § € v{u,v}* have a common prefix of length at least

|u| + |v| — ged(|ul, |v|), then u and v are powers of a common word.

F. Manea Hidden Repetitions Toronto, April 2013 5

Basic tools

Basic structure of pseudo-repetitions (used for y = f(x)).

Lemma (Uniqueness-1)

x, y words over V; x, y not powers of the same word, w € {x, y}*.
There exists a unique decomposition of w in factors x, y. O

F. Manea Hidden Repetitions Toronto, April 2013 6

Basic tools

Basic structure of pseudo-repetitions (used for y = f(x)).

Lemma (Uniqueness-1)

x, y words over V; x, y not powers of the same word, w € {x, y}*.
There exists a unique decomposition of w in factors x, y. O

Lemma (Uniqueness-2)

f non-erasing anti-/morphism, x,y,z words over V, f(x) = f(z) =y,

oy yy n{z,yyz{z, y}* # 0.
Then x = z. O

F. Manea Hidden Repetitions Toronto, April 2013 6

Basic tools

How to find the unique decomposition?
(Take y to be the longest of x and f(x).)

Lemma (Shifts)

x,y e VT, we {xy}* \ {x}*, |x| <ly

, X, y not powers of some word.
M = max{p | xP is a prefix of w} and N = max{p | xP is a prefix of y}.
We have:

o M>N.

F. Manea Hidden Repetitions Toronto, April 2013 7

Basic tools

How to find the unique decomposition?
(Take y to be the longest of x and f(x).)

Lemma (Shifts)

x,y e VT, we {xy}* \ {x}*, |x| <ly

, X, y not powers of some word.
M = max{p | xP is a prefix of w} and N = max{p | xP is a prefix of y}.
We have:

o M>N.

@ If M= N then w € y{x,y}* holds.

F. Manea Hidden Repetitions Toronto, April 2013 7

Basic tools

How to find the unique decomposition?
(Take y to be the longest of x and f(x).)

Lemma (Shifts)

, X, y not powers of some word.
M = max{p | xP is a prefix of w} and N = max{p | xP is a prefix of y}.

x,y e VT, we {xy}* \ {x}*, |x| <ly

We have:
o M>N.
@ If M= N then w € y{x,y}* holds.

e If M > N then exactly one of the following holds:
—w e xM Ny fx, y 3 \ XMLy,
—w € xM=N=1y 05 y3+\ xM=Nyv* and N > 0. O

F. Manea Hidden Repetitions Toronto, April 2013 7

Deciding whether w is an f-repetition

1. Test whether there exists x such that w = x*, with k > 2.

F. Manea Hidden Repetitions Toronto, April 2013 8

Deciding whether w is an f-repetition

1. Test whether there exists x such that w = x*, with k > 2.
2. Forall t = wl[l..i], |f(t)] > 1, t, f(t) not powers of some x € V* do 3&4.

3. Let x be the shortest of t and f(t), and y the longest. Apply Shifts Lemmal

F. Manea Hidden Repetitions Toronto, April 2013 8

Deciding whether w is an f-repetition

1.
2.
3.
4.

Test whether there exists x such that w = x¥, with k > 2.
For all t = w[l..i], |f(¢t)] > 1, t, f(t) not powers of some x € V* do 3&4.
Let x be the shortest of t and f(t), and y the longest. Apply Shifts Lemma!

We construct a maximal prefix w[i +1..s — 1] € {x, y}* of w[i + 1..n]:

— Initially, s =i+ 1.

— Let M = max{p | xP prefix of w[s..n]}, N = max{p | xP prefix of y};
—If w[s..n] = x™, we are done!

— If xM=Ny occurs at position s, shift s+ = (M — N)|x| + |y|, iterate;
—If M > N and xM~N=1yx occurs at s, shift s+ = (M — N — 1)|x| + |y|,
iterate;

F. Manea Hidden Repetitions Toronto, April 2013

8

Deciding whether w is an f-repetition

1.
2.
3.
4.

Test whether there exists x such that w = x¥, with k > 2.
For all t = w[l..i], |f(¢t)] > 1, t, f(t) not powers of some x € V* do 3&4.
Let x be the shortest of t and f(t), and y the longest. Apply Shifts Lemma!

We construct a maximal prefix w[i +1..s — 1] € {x, y}* of w[i + 1..n]:

— Initially, s =i+ 1.

— Let M = max{p | xP prefix of w[s..n]}, N = max{p | xP prefix of y};
—If w[s..n] = x™, we are done!

— If xM=Ny occurs at position s, shift s+ = (M — N)|x| + |y|, iterate;
—If M > N and xM~N=1yx occurs at s, shift s+ = (M — N — 1)|x| + |y|,
iterate;

Time complexity:
— f general O(3_,<;<,[7]) € O(nlogn).

F. Manea Hidden Repetitions Toronto, April 2013

8

Deciding whether w is an f-repetition

Test whether there exists x such that w = x¥, with k > 2.
For all t = w[l..i], |f(t)| > 1, t, f(t) not powers of some x € V* do 3&4.

Let x be the shortest of t and f(t), and y the longest. Apply Shifts Lemma!

el

We construct a maximal prefix w[i +1..s — 1] € {x, y}* of w[i + 1..n]:

— Initially, s =i+ 1.

— Let M = max{p | xP prefix of w[s..n]}, N = max{p | xP prefix of y};
—If w[s..n] = x™, we are done!

— If xM=Ny occurs at position s, shift s+ = (M — N)|x| + |y|, iterate;
—If M > N and xM~N=1yx occurs at s, shift s+ = (M — N — 1)|x| + |y|,
iterate;

Time complexity:
— f general O(3_,<;<,[7]) € O(nlogn).
- f uniform: O(3_;,17]) € O(nloglog n).

F. Manea Hidden Repetitions Toronto, April 2013

8

Optimal time for f uniform

@ In the algorithm: y = f(t) and x = t.
Each shift: [tXf(t)|. But k can be 0...

F. Manea Hidden Repetitions Toronto, April 2013 9

Optimal time for f uniform

@ In the algorithm: y = f(t) and x = t.
Each shift: [tXf(t)|. But k can be 0...

@ Idea: shift with a word from {t, f(t)}, for some fixed a depending
on n but not on t.

F. Manea Hidden Repetitions Toronto, April 2013]

Optimal time for f uniform

In the algorithm: y = f(t) and x = t.

Each shift: [tXf(t)|. But k can be 0...

Idea: shift with a word from {t, f(t)}*, for some fixed o depending
on n but not on t.

n
alt]

nloglog n)
—)

@ Consequence: for each t we do steps...

@ ... the overall complexity O(

F. Manea Hidden Repetitions Toronto, April 2013]

Optimal time for f uniform

In the algorithm: y = f(t) and x = t.

Each shift: [tXf(t)|. But k can be 0...

Idea: shift with a word from {t, f(t)}*, for some fixed o depending
on n but not on t.

n
alt]

nloglog n)
—)

@ Consequence: for each t we do steps...

... the overall complexity O(

Linear time: o = [log log n].

F. Manea Hidden Repetitions Toronto, April 2013 9

Optimal time for f uniform

In the algorithm: y = f(t) and x = t.
Each shift: [tXf(t)|. But k can be 0...

Idea: shift with a word from {t, f(t)}*, for some fixed o depending
on n but not on t.

n
alt]

nloglog n)
—)

@ Consequence: for each t we do steps...

... the overall complexity O(

Linear time: o = [log log n].

Doable: preprocessing + careful organisation of data ...

F. Manea Hidden Repetitions Toronto, April 2013 9

Theorem (STACS 2013)

Given w € V* and f : V* — V* be a constant size anti-/morphism. One
can decide whether w € t{t,f(t)}" in O(nlog n) time. If f is uniform we
only need O(n) time. O

F. Manea Hidden Repetitions Toronto, April 2013 10

Theorem (STACS 2013)

Given w € V* and f : V* — V* be a constant size anti-/morphism. One
can decide whether w € t{t,f(t)}" in O(nlogn) time. If f is uniform we
only need O(n) time. O

v

Theorem (STACS 2013)

Given w € V* and f : V* — V* be a constant size anti-/morphism, we

1
decide whether w € {t, f(t)}{t, f(t)}* in O(n"tiewer log n) time. If f is
non-erasing we solve the problem in O(nlog n) time, while when f is
uniform we only need O(n) time. O

v,

F. Manea Hidden Repetitions Toronto, April 2013 10

The second problem

Given w € VT, decide whether there exists an anti-/morphism
f:V*— V* and a prefix t of w such that w € t{¢t, f(¢)}T.

Theorem (CiE 2013)

Given a word w and a vector T of |V/| numbers, we decide whether there
exists an anti-/morphism f of length type T such that w € t{t, f(t)}* in
O(n(log n)?) time. If T defines uniform anti-/morphisms: O(n) time.

F. Manea Hidden Repetitions Toronto, April 2013 11

The second problem

Given w € VT, decide whether there exists an anti-/morphism
f:V*— V* and a prefix t of w such that w € t{¢t, f(¢)}T.

Theorem (CiE 2013)

Given a word w and a vector T of |V/| numbers, we decide whether there
exists an anti-/morphism f of length type T such that w € t{t, f(t)}* in
O(n(log n)?) time. If T defines uniform anti-/morphisms: O(n) time.

Theorem (CiE 2013)

For a word w € VT, deciding the existence of f : V* — V* and a prefix t
of w such that w € t{t, f(t)}T with |t| > 2 (respectively,

w € t{t, f(t)}{t, f(t)}T) takes linear time (respectively, is NP-complete)
in the general case, is NP-complete for f non-erasing, and takes O(n?)
time for f uniform.

F. Manea Hidden Repetitions Toronto, April 2013 11

Repetitive factors

Given a word w € V* and f,

(1) Enumerate all (i,j,¢), 1 <i,j,¢ < |w]|, such that there exists t with
wli.j] € {t, f(£)}".

(2) Given ¢, enumerate all (i,j), 1 <i,j < |w|, so there exists t with
wli.j] € {t, f(£)}*.

F. Manea Hidden Repetitions Toronto, April 2013 12

Repetitive factors

Given a word w € V* and f,

(1) Enumerate all (i,j,¢), 1 <i,j,¢ < |w]|, such that there exists t with
wli.j] € {t, f(£)}".

(2) Given ¢, enumerate all (i,j), 1 <i,j < |w|, so there exists t with
wli.j] € {t, f(£)}*.

General approach:

Construct data structures enabling us to answer in constant time queries
rep(i,j,€):

“Is there t € V* such that w[i..j] € {t, f(t)}*?",
forall1<i<j<|w|and1</{¢<|w|.

F. Manea Hidden Repetitions Toronto, April 2013 12

Repetitive factors

Given a word w € V* and f,
(1) Enumerate all (i,j,¢), 1 <i,j,¢ < |w]|, such that there exists t with

wli.j] € {t, f(£)}".
(2) Given ¢, enumerate all (i,j), 1 <i,j < |w|, so there exists t with

wli.j] € {t, f(t)}*.
General approach:

Construct data structures enabling us to answer in constant time queries
rep(i,j,€):

“Is there t € V* such that w[i..j] € {t, f(t)}*?",
forall1<i<j<|w|and1</{¢<|w|.

Second question: we answer queries rep(i,j,¢) for a fixed ¢, given as input
together with w.

F. Manea Hidden Repetitions Toronto, April 2013 12

Results (STACS 2013)

Building the data structures (answer queries for all ¢, resp. for given /)
o f general: O(n3%), resp. O(n?/).
e f non-erasing: O(n3), resp. O(n?).
o f literal: O(n?), resp. O(n?).

Tools: combinatorics on words (the Uniqueness Lemmas) + number
theoretic algorithms + data structures.

F. Manea Hidden Repetitions Toronto, April 2013

13

Results (STACS 2013)

Building the data structures (answer queries for all ¢, resp. for given /)
o f general: O(n3%), resp. O(n?().
e f non-erasing: O(n3), resp. O(n?).
o f literal: O(n?), resp. O(n?).
Tools: combinatorics on words (the Uniqueness Lemmas) + number
theoretic algorithms + data structures.
Finding the set of all {-repetitive factors (for all ¢, resp. for a given ¢):
e f general: O(n3®), resp. O(n?().
e f non-erasing: ©(n3), resp. ©(n?).
e f literal: ©(n?log n), resp. ©(n?).

Highlighted bounds: no other algorithm performs better in the worst case.

F. Manea Hidden Repetitions Toronto, April 2013

13

THANK YOU!

F. Manea Hidden Repetitions Toronto, April 2013 14

