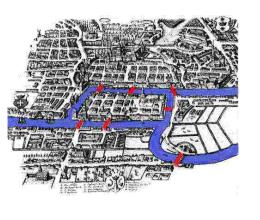
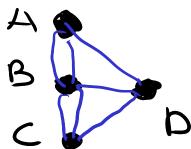
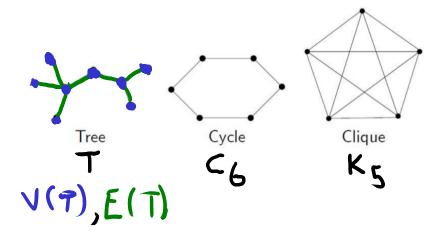
How I learned to do Malhenstive

The First(?) Routing Problem

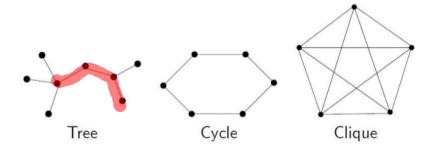




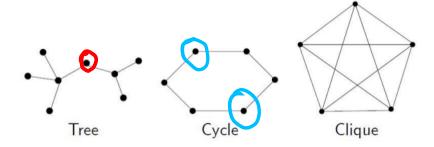
Three Graphs



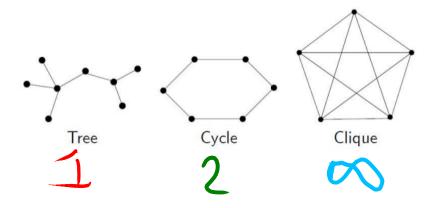
Graphs and Connectivity



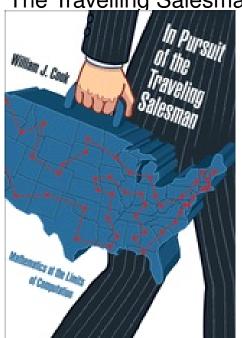
Graphs and Connectivity

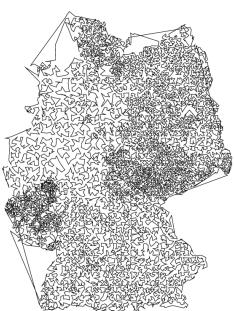


Graphs and Connectivity



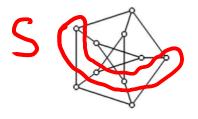
The Travelling Salesman Problem





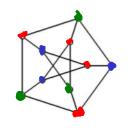
Conflict Graphs, Stable Sets, and Colouring

Conflict Graphs, Stable Sets, and Colouring



A subset S of V is stable if there is no edge xy with $x, y \in S$

Conflict Graphs, Stable Sets, and Colouring



A subset S of V is stable if there is no edge xy with $x, y \in S$

 $\chi(G)$, the chromatic number of G, is the minimum number of stable sets in a partition of V(G).

Handling Large Graphs: An Enduring Problem

As far as the problem of the seven bridges of Konigsberg is concerned, it can be solved by making an exhaustive list of all possible routes. and then determining whether or not any route satisfies the conditions of the problem. Because of the number of possibilities, this method of solution would be too difficult and laborious, and in other problems with more bridges it would be impossible.

Euler, 1736

Handling Large Graphs: An Enduring Problem

As far as the problem of the seven bridges of Konigsberg is concerned, it can be solved by making an exhaustive list of all possible routes. and then determining whether or not any route satisfies the conditions of the problem. Because of the number of possibilities, this method of solution would be too difficult and laborious, and in other problems with more bridges it would be impossible.

Euler, 1736 (in Latin)

A Framework: Computational Complexity

A Framework: Computational Complexity

P v. NP-complete

The Colouring ILP

$$\chi(G) = \min \Sigma_{S \in \mathcal{S}(G)} x_S$$
 subject to:

 $\forall v \in V: \; \Sigma_{v \in S} \; x_S = 1$ x > 0, x integer.

 $\mathcal{S}(G)$: the stable sets of G.

The Colouring ILP

The Colouring LP

 $\chi(G) = \min \Sigma_{S \in \mathcal{S}(G)} x_S$

 $\chi^t(G) = \min \Sigma_{S \in S(G)} x_S$

subject to:

subject to: $\forall v \in V: \; \Sigma_{v \in S} \; x_S = 1$

 $\forall v \in V: \; \Sigma_{v \in S} \; x_S = 1$ x > 0, x integer.

 $\mathcal{S}(G)$: the stable sets of G.

x > 0.

The Colouring LP

 $\chi^t(G) = \min \Sigma_{S \in S(G)} x_S$

$$\chi(G) = \min \Sigma_{S \in \mathcal{S}(G)} x_S$$
 subject to:

subject to:

 $\forall v \in V: \; \Sigma_{v \in S} \; x_S = 1$

 $\forall v \in V: \; \Sigma_{v \in S} \; x_S = 1$ x > 0, x integer.

x > 0.

S(G): the stable sets of G. $\chi^t(C_5) = 2.5$.

A Second Technique:

Global Results via Local Analysis

A Second Technique: Global Results via Local Analysis

Structural Decomposition

A Second Technique: Global Results via Local Analysis

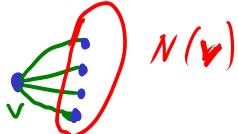
Structural Decomposition

The Probabillistic Method

Two Local Bounds on Colouring

ullet $\omega(G)$ is the size of the largest clique in G

- ullet $\omega(G)$ is the size of the largest clique in G
- the neighbourhood of v, denoted N(v) contains those vertices joined to v by an edge



- ullet $\omega(G)$ is the size of the largest clique in G
- the neighbourhood of v, denoted N(v) contains those vertices joined to v by an edge
- the degree of v, denoted $\delta(v)$, is |N(v)|

- $\omega(G)$ is the size of the largest clique in G
- the neighbourhood of v, denoted N(v) contains those vertices joined to v by an edge
- the degree of v, denoted $\delta(v)$, is |N(v)|
- Δ is the maximum degree of a vertex in G

- $\omega(G)$ is the size of the largest clique in G
- the neighbourhood of v, denoted N(v) contains those vertices joined to v by an edge
- the degree of v, denoted $\delta(v)$, is |N(v)|
- $ightharpoonup \Delta$ is the maximum degree of a vertex in G
- $\omega(G) \leq \chi(G) \leq \Delta(G) + 1$.

A Conjecture

$$\chi(G) \leq \lceil \frac{\omega(G) + \Delta(G) + 1}{2} \rceil$$

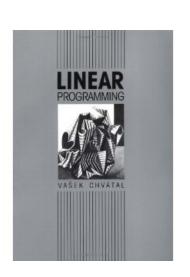
Lessons from Vasek I

Look for what Hilbert calls

the numerous and surprising analogies and that apparently prearranged harmony which the mathematician so often perceives

Lessons from Vasek II

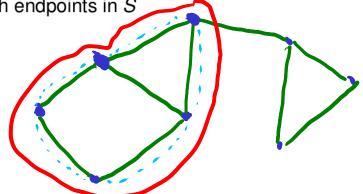
Write, and then rewrite, and rewrite and rewrite and rewrite until you get it right



Perfect Graphs

Perfect Graphs

For $S \subseteq V(G)$, the subgraph G[S] induced by S has vertex set S and contains all the edges of G with both endpoints in S



Perfect Graphs

- For S ⊆ V(G), the subgraph G[S] induced by S has vertex set S and contains all the edges of G with both endpoints in S
- A graph G is perfect if each of its induced subgaphs H satisfies χ(H) = ω(H)

Colouring Perfect Graphs

Colouring Perfect Graphs

The fractional chromatic number of a perfect graph G is $\omega(G)$.

Colouring Perfect Graphs

The fractional chromatic number of a perfect graph G is $\omega(G)$.

Furthermore, every colour class of an optimal fractional colouring meets every clique of *G*.

Colouring Perfect Graphs

The fractional chromatic number of a perfect graph G is $\omega(G)$.

Furthermore, every colour class of an optimal fractional colouring meets every clique of *G*.

Given an optimal fractional colouring, rip out a colour class and recurse.

The Stable Set Polytope of *G* consists of those vectors which are convex combinations of characteristic vectors of its stable sets.

The Stable Set Polytope of G consists of those vectors which are convex combinations of characteristic vectors of its stable sets. A graph has a fractional β - colouring precisely if $(\frac{1}{\beta},...,\frac{1}{\beta})$ is in its stable set polytope.

The Stable Set Polytope of G consists of those vectors which are convex combinations of characteristic vectors of its stable sets. A graph has a fractional β - colouring precisely if $(\frac{1}{\beta},...,\frac{1}{\beta})$ is in its stable set polytope. A vector x is in the stable set polytope of a perfect graph G precisely if for every clique C.

the sum of x_v over v in C is 1 (Chvatal, 1974).

The Stable Set Polytope of G consists of those vectors which are convex combinations of characteristic vectors of its stable sets. A graph has a fractional β - colouring precisely if $(\frac{1}{\beta},...,\frac{1}{\beta})$ is in its stable set polytope. A vector x is in the stable set polytope of a perfect graph G precisely if for every clique C, the sum of x_v over v in C is 1 (Chvatal, 1974). Can find a fractonal colouring of a perfect graph in polynomial time (Grotschel, Lovasz, & Schrijver, 1979).

For every $k \ge 2$, C_{2k+1} is imperfect, as is its complement C_{2k+1}

- ► For every $k \ge 2$, C_{2k+1} is imperfect, as is its complement C_{2k+1}
- A graph is Berge if it contains neither C_{2k+1} nor C_{2k+1}

- ► For every $k \ge 2$, C_{2k+1} is imperfect, as is its complement C_{2k+1}
- A graph is Berge if it contains neither C_{2k+1} nor C_{2k+1}
- ▶ SPGC(Berge 1961): If *G* is Berge, it is perfect.

- ► For every $k \ge 2$, C_{2k+1} is imperfect, as is its complement C_{2k+1}
- A graph is Berge if it contains neither C_{2k+1} nor C_{2k+1}
- ▶ SPGC(Berge 1961): If *G* is Berge, it is perfect.
- or equivalently: a graph is minimally imperfect precisely if it is C_{2k+1} or $\overline{C_{2k+1}}$ for some $k \geq 2$.

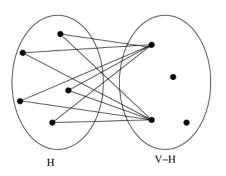
G is perfect precisely if \overline{G} is. (Lovasz 1972)

G is perfect precisely if \overline{G} is. (Lovasz 1972)

The proof used the fact that no minimal imperfect graph contains a homogeneous set.

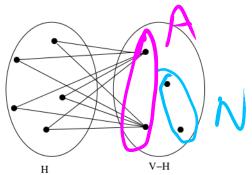
G is perfect precisely if \overline{G} is. (Lovasz 1972)

The proof used the fact that no minimal imperfect graph contains a homogeneous set.

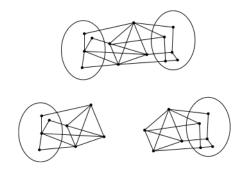


G is perfect precisely if \overline{G} is. (Lovasz 1972)

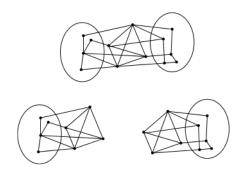
The proof used the fact that no minimal imperfect graph contains a homogeneous set.



Clique Cutsets



Clique Cutsets



No minimal imperfect graph has a clique cutset.

G is *triangulated* if it contans no C_k with k > 4 as an induced subgraph.

G is *triangulated* if it contans no C_k with k > 4 as an induced subgraph.

Theorem: Every triangulated graph is a clique or has a clique cutset(Dirac 1961)

G is *triangulated* if it contans no C_k with k > 4 as an induced subgraph.

Theorem: Every triangulated graph is a clique or has a clique cutset(Dirac 1961)

Corollary: Every triangulated graph is perfect.

Star Cutsets and Perfect Graphs

Theorem: No minimal imperfect graph has a star cutset (Chvatal 1985)

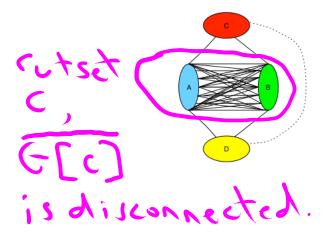
G is *Strongly Berge* if it contains no C_r or $\overline{C_r}$ for $r \ge 5$

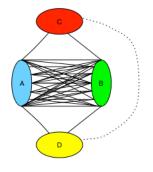
G is *Strongly Berge* if it contains no C_r or $\overline{C_r}$ for $r \ge 5$

Thm: If G is a Strongly Berge and |V(G)| > 2, then G or \overline{G} has a star cutset. (Hayward 1986)

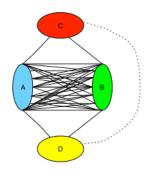
G is *Strongly Berge* if it contains no C_r or $\overline{C_r}$ for $r \ge 5$

Thm: If G is a Strongly Berge and |V(G)| > 2, then G or \overline{G} has a star cutset. (Hayward 1986) Corollary: Every Strongly Berge Graph is perfect.





Conjecture: No minimal imperfect graph has a skew cutset (Chvatal 1985)



Conjecture: No minimal imperfect graph has a skew cutset (Chvatal 1985)

Theorem: No minimal imperfect graph has an even pair(Meyniel 1987)

My introduction to Minors and Models

My introduction to Minors and Models

B. A. Reed

Graph Minors I:

Rooted Routing

July 10, 2007

Springer Berlin Heidelberg NewYork HongKong Loudon Miton Paris Tokyo

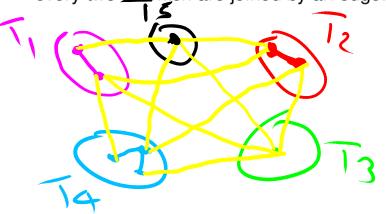
Contents

1	An Introduction to Routing
2	An Introduction to Graph Minore
3	Kt Minors and the 2-DRP Problem
4	Plane Routing: The Algorithm
5	Planar Graphs Revisited: Basics and Base Cases 6
G	Planar Routing: The Key Lemma
7	Irrelevant Vertices
н	A Comectivity Messure
9	Introducing Tree Decompositions
10	A Duality Theorem
11	Tangles, Separations, and Chaonkal Tree Decompositions . 12
12	Excluding Walls
13	Using Bounded Width Tree Decompositions
14	Finding Bounded Width Tree Decompositions
15	Staring at The Walls
16	The Algorithm
17	Producing Portfolios

K_I-model Free Graphs

K_I-model Free Graphs

A K_l model consists of l vertex disjoint trees every two of which are joined by an edge.



K_{l} -model Free Graphs

A K_l model consists of l vertex disjoint trees every two of which are joined by an edge. If G arises via clique identification form graphs without K_l models then it also has no K_l model.

K_l -model Free Graphs

A K_l model consists of l vertex disjoint trees every two of which are joined by an edge. If G arises via clique identification form graphs without K_l models then it also has no K_l model. G has no K_5 model precisely if it arises via clique identification from graphs which are planar

K_l -model Free Graphs

A K_l model consists of l vertex disjoint trees every two of which are joined by an edge. If G arises via clique identification form graphs without K_l models then it also has no K_l model. G has no K_5 model precisely if it arises via clique identification from graphs which are planar or one special 8 vertex graph.

K_{l} -model Free Graphs

A K_l model consists of l vertex disjoint trees every two of which are joined by an edge. If G arises via clique identification form graphs without K_i models then it also has no K_i model. G has no K_5 model precisely if it arises via clique identification from graphs which are planar or one special 8 vertex graph.

5 a substat

Hadwiger's Conjecture

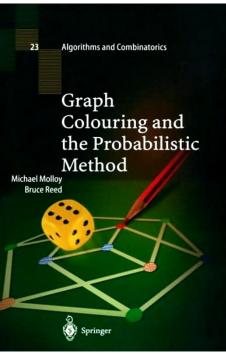
Hadwiger's Conjecture

If G contains no K_l model then it has an l-1 colouring.

A Fractional Hadwiger's Conjecture

A Fractional Hadwiger's Conjecture

Theorem: If G has no K_l model then $\chi^f(G) \le 2l - 2$ (R. & Seymour, 1998).



A Global/Local Lemma

If $\ensuremath{\mathcal{A}}$ is a family of events satisfying:

$$\sum_{E\in A}\operatorname{Prob}(E)<1$$

then with positive probability none of the (bad) events in $\mathcal A$ occurs.

Bounding χ using χ^f

Bounding χ using χ^f

$$\chi(G) \leq \lceil \log |V(G)|\chi^f(G)\rceil + 1.$$

Bounding χ using χ^t

$$\chi(G) \leq \lceil \log |V(G)|\chi^f(G)\rceil + 1.$$

There is a probability distribution on stable sets s.t.

$$Prob(v \in S) = \frac{1}{\chi^f(G)}$$

Bounding χ using χ^t

$$\chi(G) \leq \lceil \log |V(G)|\chi^f(G)\rceil + 1.$$

There is a probability distribution on stable sets s.t.

$$Prob(v \in S) = \frac{1}{\chi^f(G)}$$

Pick $\lceil log \mid V(G) \mid \chi^t(G) \rceil + 1$ random stable sets.

Bounding χ using χ^f

$$\chi(G) \leq \lceil \log |V(G)|\chi^f(G)\rceil + 1.$$

There is a probability distribution on stable sets s.t.

$$Prob(v \in S) = \frac{1}{\chi^f(G)}$$

Pick $\lceil log \mid V(G) \mid \chi^f(G) \rceil + 1$ random stable sets.

$$Prob(miss\ v) = (1 - \frac{1}{\chi^f})^{\lceil log\ |V|\chi^f \rceil + 1} < \frac{1}{n}$$

Bounding χ using χ^f

$$\chi(G) < \lceil \log |V(G)| \chi^f(G) \rceil + 1.$$

There is a probability distribution on stable sets s.t.

$$extit{Prob}(v \in \mathcal{S}) = rac{1}{v^f(G)}$$

Pick $\lceil log \mid V(G) \mid \chi^f(G) \rceil + 1$ random stable sets.

$$Prob(miss\ v) = (1-rac{1}{\chi^f})^{\lceil log\ \mid V\mid \chi^f \rceil+1} < rac{1}{n}$$

 $Prob(have\ a\ colouring) > 0.$

Finding Nearly Optimal Colourings

Finding Nearly Optimal Colourings

1. A Local Local Lenma

Finding Nearly Optimal Colourings

- 1. A Local Local Lenma
- 2. Bells and Whistles

The Lovasz Local Lemma

If $\ensuremath{\mathcal{A}}$ is a family of events satisfying:

for each F in \mathcal{A} there exists $\mathcal{S}(F)$ s.t. F is mutually independent of $\mathcal{A} - \mathcal{S}(F)$, and $\sum_{E \in \mathcal{S}(F)} \operatorname{Prob}(E) < 1/4$

then with positive probability none of the (bad) events in $\mathcal A$ occurs.

1. Special Probability Distributions

- 1. Special Probability Distributions
- 2. Recursive (List) Colouring

- 1. Special Probability Distributions
- 2. Recursive (List) Colouring
- 3. Greedy Completion

- 1. Special Probability Distributions
- 2. Recursive (List) Colouring
- 3. Greedy Completion
- 4. Structural Decomposition

- 1. Special Probability Distributions
- 2. Recursive (List) Colouring
- 3. Greedy Completion
- 4. Structural Decomposition
- 5. Strong Concentration Inequalities

Some Results

1. $\omega + C$ colouring total graphs (Molloy & R. 1998).

Some Results

- 1. $\omega + C$ colouring total graphs (Molloy & R. 1998).
- 2. $\frac{(3+\epsilon)\Delta(G)}{2}$ Colouring the Square of A Planar *G* (Havet,McDiarmid,R. & Van Den Heuvel 2007).

Some Results

- 1. $\omega + C$ colouring total graphs (Molloy & R. 1998).
- 2. $\frac{(3+\epsilon)\Delta(G)}{2}$ Colouring the Square of A Planar *G* (Havet,McDiarmid,R. & Van Den Heuvel 2007).
- 3. Determining The Threshold k_{Δ} for which $\chi > \Delta k_{\Delta}$ is a local property in graphs of maximum degree Δ (Molloy & R. 2001/in press).

Conclusion via An Alternative Title

Conclusion via An Alternative Title

Some Thoughts on Writing A Thesis