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Tensegrity Frameworks

Definition
A tensegrity graph is a simple undirected graph G where each edge
is labeled as either a bar, a cable, or a strut.

Definition
A tensegrity framework in Rr , denoted by (G , p), is a tensegrity
graph where each node i is mapped to a point pi in Rr .

If dim (affine hull of p1, . . . , pn) = k , we say that tensegrity (G , p)
is k-dimensional.
A tensegrity framework has two aspects: a geometric one (p) and a
combinatorial one (G ).
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Applications

tensegrities have important applications in:

1 Molecular conformation theory.

2 Wireless sensor network localization problem.

3 Art.
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Tensegrity as an Artwork

Kenneth Snelson needle tower sculpture in Washington D.C.
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Tensegrity as an Artwork Cont’d

Kenneth Snelson Indexer II sculpture at the University of Michigan,
Ann Arbor
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Domination and Affine-Domination

Definition
Tensegrity (G , q) in Rs is said to be dominated by tensegrity (G , p)
in Rr if

||qi − qj ||=||pi − pj || for all bar {i,j}.
||qi − qj ||≤||pi − pj || for all cable {i,j}.
||qi − qj ||≥||pi − pj || for all strut {i,j}.

Definition
Tensegrity (G , q) in Rr is said to be affinely-dominated by tensegrity
(G , p) in Rr if (G , q) is dominated by (G , p) and

qi = Api + b for all i = 1, . . . , n

for some r × r matrix A and an r -vector b.
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Dimensional and Universal Rigidities

Definition
Tensegrity (G , q) in Rr is said to be congruent to tensegrity (G , p)
in Rr if ||qi − qj || = ||pi − pj || for every i = 1, . . . , n.

Definition
An r -dimensional tensegrity (G , p) in Rr is said to be dimensionally
rigid if no s-dimensionl tensegrity (G , q), for any s ≥ r + 1, is
dominated by (G , p).

Definition
An r -dimensional tensegrity (G , p) in Rr is said to be universally
rigid if every s-dimensionl tensegrity (G , q), for any s, that is
dominated by (G , p) is in fact congruent to (G , p).
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Example

Strut

Cable

1 2

3 4

universally
rigid.

1 2

3 4

Not universally rigid. It folds
on the diagonal.
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Characterization of Universal Rigidity

Theorem
An r-dimensional Tensegrity (G , p) in Rr is universally rigid if and
only if

1 (G , p) is dimensionally rigid.

2 There does not exist an r-dimensional tensegrity (G , q) in Rr

affinely-dominated by, but not congruent to, (G , p).

Condition 2 is known as the “no conic at infinity” condition.
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In This Talk, I’ll:

1 Present the well-known sufficient condition for dimensional
rigidity.

2 Present conditions under which the “no conic at infinity” holds.
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Stress Matrices

A stress of a tensegrity (G , p) is a real-valued function ω on
E (G ) = B ∪ C ∪ S such that:∑

j :{i ,j}∈E(G)

ωij(pi − pj) = 0 for all i = 1, . . . , n.

A stress ω is proper if ωij ≥ 0 for every {i , j} ∈ C and ωij ≤ 0
for very {i , j} ∈ S .

The stress matrix associated with stress ω is the n × n
symmetric matrix Ω where

Ωij =


−ωij if (i , j) ∈ E (G ),
0 if (i , j) 6∈ E (G ),∑

k:{i ,k}∈E(G) ωik if i = j .
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Example

Strut

Cable

1 2

4 3

ω12 = 1, ω14 = 1,
ω13 = −1.

Ω =


1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1

 .
Ω is proper positive
semidefinite of rank 1.
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Sufficient Condition for Dimensional Rigidity

Theorem (Connelly ’82)

An r-dimensional Tensegrity (G , p) on n nodes in Rr ( r ≤ n − 2) is
dimensionally rigid if there exists a proper positive semidefinite
stress matrix Ω of (G , p) of rank n − r − 1.
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Example

Strut

Cable

bar

1
2

3

4

A dimensionally but not universally rigid tensegrity.
The “No Conic at Infinity” Condition does not hold.
In the sequel we concentrate on this condition.
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Generic Configurations

Definition
A configuration p = (p1, . . . , pn) in Rr is generic if the coordinates
of p1, . . . , pn are algebraically independent over the rationals, i.e.,
the coordinates of p1, . . . , pn do not satisfy any nonzero polynomial
with rational coefficients.

Lemma (Connelly ’05)

Let (G , p) be an r-dimensional tensegerity. If configuration p is
generic and every node of G has degree at least r , then the “no
conic at infinity ”condition holds. Consequently, dimensional rigidity
implies universal rigidity.
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Configurations in General Position

Definition
A configuration p = (p1, . . . , pn) in Rr is in general position if every
subset of {p1, . . . , pn} of cardinality r + 1 is affinely independent.

Definition
A bar framework (G , p) is a tensegrity framework where all the
edges are bars, i.e., E (G ) = B and C = S = ∅.

Lemma (A. and Ye ’13)

Let (G , p) be an r-dimensional bar framework. If (G , p) admits a
stress matrix Ω of rank n − r − 1 and configuration p is in general
position, then the “no conic at infinity ”condition holds.
Consequently, dimensional rigidity implies universal rigidity.
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Let C ∗ and S∗ be the sets of stressed cables and stressed struts
respectively, i.e,
C ∗ = {{i , j} ∈ C : ωij 6= 0} and S∗ = {{i , j} ∈ S : ωij 6= 0}.

Theorem (A. and V-T Nguyen ’13)

Let (G , p) be an r-dimensional tensegrity in Rr . If the following
conditions hold:

1 there exists a proper stress matrix Ω of (G , p) of rank n− r − 1.

2 for each node i , the set {pi} ∪ {pj : {i , j} ∈ B ∪ C ∗ ∪ S∗}
affinely span Rr .

Then the “no conic at infinity ”condition holds. Consequently,
dimensional rigidity implies universal rigidity.

A.Y. Alfakih (joint work with Viet-Hang Nguyen ) ( Dept of Math and Statistics University of Windsor)On the Universal Rigidity of Tensegrity Frameworks
Workshop on Discrete Geometry, Optimization and Symmetry Fields Institute, Nov 2013 17

/ 30



Let C ∗ and S∗ be the sets of stressed cables and stressed struts
respectively, i.e,
C ∗ = {{i , j} ∈ C : ωij 6= 0} and S∗ = {{i , j} ∈ S : ωij 6= 0}.

Theorem (A. and V-T Nguyen ’13)

Let (G , p) be an r-dimensional tensegrity in Rr . If the following
conditions hold:

1 there exists a proper stress matrix Ω of (G , p) of rank n− r − 1.

2 for each node i , the set {pi} ∪ {pj : {i , j} ∈ B ∪ C ∗ ∪ S∗}
affinely span Rr .

Then the “no conic at infinity ”condition holds. Consequently,
dimensional rigidity implies universal rigidity.

A.Y. Alfakih (joint work with Viet-Hang Nguyen ) ( Dept of Math and Statistics University of Windsor)On the Universal Rigidity of Tensegrity Frameworks
Workshop on Discrete Geometry, Optimization and Symmetry Fields Institute, Nov 2013 17

/ 30



Corollary (A. and V-T Nguyen ’13)

Let (G , p) be an r-dimensional tensegrity in Rr . If the following
conditions hold:

1 there exists a proper stress matrix Ω of (G , p) of rank n− r − 1.

2 for each node i , the set {pi} ∪ {pj : {i , j} ∈ B ∪ C ∗ ∪ S∗} is in
general position in Rr .

Then the “no conic at infinity ”condition holds. Consequently,
dimensional rigidity implies universal rigidity.
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Theorem (A. and V-T Nguyen ’13)

Let (G , p) be an r-dimensional bar framework in Rr . If the following
conditions hold:

1 there exists a stress matrix Ω of (G , p) of rank n − r − 1.

2 for each node i , the set {pi} ∪ {pj : {i , j} ∈ E (G )} affinely
span Rr .

Then the “no conic at infinity ”condition holds. Consequently,
dimensional rigidity implies universal rigidity.
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The Idea Behind the Proof

1 We use Gram matrices to represent configuration
p = (p1, . . . , pn).

2 Let PT = [p1 · · · pn]. P is called the configuration matrix.
Then the Gram matrix is PPT .

3 Thus the universal rigidity problem becomes amenable to
semi-definite programming.

Theorem (A. and V-T Nguyen ’13)

Let (G , p) be an r-dimensional tensegrity in Rr and let Ω be a
proper positive semidefinite stress matrix of (G , p). Then Ω is a
proper stress matrix for all tensegrities (G , p′) dominated by (G , p).
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Gale Matrices

A Gale matrix of r -dimensional tensegrity (G , p) in Rr is any
n × (n − r − 1) matrix Z such that the columns of Z form a
basis of the null space of :[

p1 p2 · · · pn

1 1 · · · 1

]
=

[
PT

eT

]
.

In Polytope theory, the rows of Z ( z1, . . . , zn in Rn−r−1) are
called Gale transforms of p1, . . . , pn.

The Gale matrix Z encodes the affine dependencies among the
points p1, . . . , pn.
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Gale Matrix Z and Stress Matrix Ω

Theorem (A ’07)

Let Ω and Z be, respectively, a stress matrix and a Gale matrix of
(G , p). Then

Ω = Z ΨZT for some symmetric matrix Ψ.

On the other hand, let Ψ′ be any symmetric matrix such that

z i TΨ′z j = 0 for all {i , j} 6∈ E ,

where z i is the ith row of Z . Then Z Ψ′ZT is a stress matrix of
(G , p).
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Example

Strut

Cable

1 2

4 3

Gale matrix is

Z =


1
−1

1
−1

 .
and stress matrix Ω = ZZT .
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Properties of Gale Transform

Lemma
Let (G , p) be an r-dimensional tensegrity in Rr and let z1, . . . , zn be,
respectively, Gale transforms of p1, . . . , pn. Let J ⊆ {1, . . . , n} and
assume that the set of vectors {pi : i ∈ J} affinely span Rr . Then
the set {z i : i ∈ J} is linearly independent, where J = {1, . . . , n}\J.
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Affine-Domination

Let F ij = (e i − e j)(e i − e j)T , e i is the ith standard unit vector in Rn.
Recall that the configuration matrix PT = [p1 · · · pn].

Lemma
Let (G , p) be an r-dimensional tensegrity in Rr . Then the “no conic
at infinity” holds iff there does not exist a nonzero symmetric matrix
Φ such that:

trace(F ij(PΦPT ))= 0 for all {i , j} ∈ B .
trace(F ij(PΦPT ))≤ 0 for all {i , j} ∈ C .
trace(F ij(PΦPT ))≥ 0 for all {i , j} ∈ S .
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Affine-Domination

E ij is the matrix with 1s in the ijth and jith entries and 0’s
elsewhere.

Lemma
Let (G , p) be an r-dimensional tensegrity in Rr and let Z be a Gale
matrix of (G , p). Then the “no conic at infinity” holds iff there does
not exist a nonzero y = (yij) ∈ R|Ē |+|C |+|S | and ξ = (ξi) ∈ Rn−r−1

where yij ≥ 0 for all {i , j} ∈ C and yij ≤ 0 for all {i , j} ∈ S such
that:

E(y)Z = eξT ,

where E(y) =
∑
{i ,j}∈Ē∪C∪S yijE

ij .
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Affine-Domination when a proper Ω is Known

The following are equivalent:

1 the ‘no conic at infinity” holds.

2 (Whiteley unpublished) 6 ∃ symmetric Φ 6= 0 such that:

trace(F ij(PΦPT ))= 0 for all {i , j} ∈ B ∪ C ∗ ∪ S∗.
trace(F ij(PΦPT ))≤ 0 for all {i , j} ∈ C 0.
trace(F ij(PΦPT ))≥ 0 for all {i , j} ∈ S0.

3 6 ∃y = (yij) 6= 0 ∈ R|Ē |+|C0|+|S0| and ξ = (ξi) ∈ Rn−r−1 where
yij ≥ 0 ∀ {i , j} ∈ C 0 and yij ≤ 0 ∀ {i , j} ∈ S0 such that:

E0(y)Z = eξT ,

where E0(y) =
∑
{i ,j}∈Ē∪C0∪S0 yijE

ij .
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Affine-Domination, Ω is proper of rank n − r − 1

Lemma
Assume that Ω = Z ΨZT is a proper stress matrix of (G , p) of rank
n − r − 1. Then the following are equivalent:

1 the “no conic at infinity” holds

2 6 ∃ y = (yij) 6= 0 ∈ R|Ē |+|C0|+|S0| and ξ = (ξi) ∈ Rn−r−1 where
yij ≥ 0 for all {i , j} ∈ C 0 and yij ≤ 0 for all {i , j} ∈ S0 such
that:

E0(y)Z = 0,

where E0(y) =
∑
{i ,j}∈Ē∪C0∪S0 yijE

ij .
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Outline of the Proof of the main Theorem

It suffices to prove that under the theorem assumptions, the only
solution of

E0(y)Z = 0 (1)

is the trivial solution y = 0. Hence, the “no conic at infinity”
condition holds.

Equation (1) can be written as
n∑

j=1

(E0(y))ijz
i = 0 for all i = 1, . . . , n.

which reduces to ∑
j :{i ,j}∈E∪C0∪S0

(E0(y))ijz
i = 0.

Thus the result follows from the linear independence of
{z i : {i , j} ∈ E ∪ C 0 ∪ S0}.
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Thank You
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