Plank theorems via successive
inradii

ical Sciences

Kéroly Bezdek

Lectures on Sphere
Arrangements —
the Discrete
Geometric Side

Karoly Bezdek

Canada Research Chair : \
University of Calgary

13-11-26




Alfred Tarski:Alfred Tarski (January 14, 1901, Warsaw, Russian-ruled Poland —
October 26, 1983, Berkeley, California) was a Polish logician and mathematician.
Educated in the Warsaw School of Mathematics and philosophy, he emigrated to

the USA in 1939, and taught and did research in mathematics at the
University of California, Berkeley, from 1942 until his death.[!!
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Recall that in the 1930's, Tarski posed what came to be known as the
plank problem. A plank P in B is the (closed) set of points between two
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distinct parallel hyperplanes. The width w(P) of P is simply the distance
between the two boundary hyperplanes of P. Tarski conjectured that if a
convex hody of minimal width w is covered by a collection of planks in B,
then the sum of the widths of these planks is at least w. This conjecture was
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Recall that in the 1930’s, Tarski posed what came to be known as the plank
problem. A plank P in E? is the (closed) set of points between two distinct parallel
hyperplanes. The width w(P) of P is simply the distance between the two boundary
hyperplanes of P. Tarski conjectured that if a convex body of minimal width w is
covered by a collection of planks in E?, then the sum of the widths of these planks
is at least w. This conjecture was proved by Bang in his memorable paper [5].
(In fact, the proof presented in that paper is a simplification and generalization of
the proof published by Bang somewhat earlier in [4].) Thus, we call the following
statement Bang’s plank theorem.

THEOREM 1.1. If the convex body C is covered by the planks P1,Ps, ..., P, in
E? d>2 (i.e., CCPLUPyU---UP, CE?), then >, w(P;) > w(C).

In [5], Bang raised the following stronger version of Tarski’s plank problem
called the affine plank problem. We phrase it via the following definition. Let C
be a convex body and let P be a plank with boundary hyperplanes parallel to the

hyperplane H in E¢. We define the C-width of the plank P as w?)((]pg[) and label it

we(P). (This notion was introduced by Bang [5] under the name “relative width”.)

CONJECTURE 1.2. If the convex body C 1is covered by the planks P1,Po, ...,
P, inEd d>2, then Y i  wc(P;) > 1.

4. T. Bang, On covering by parallel-strips, Mat. Tidsskr. B. 1950 (1950), 49-53.
5. T. Bang, A solution of the “Plank problem”, Proc. Am. Math. Soc. 2 (1951), 990-993.

Thoger S. V. Bang (1917-1997) was a professor at the University of Copenhagen
Mathematical Institute.



The special case of Conjecture 1.2, when the convex body to be covered is
centrally symmetric, has been proved by Ball in [3]. Thus, the following is Ball’s
plank theorem.

THEOREM 1.3. If the centrally symmetric convex body C s covered by the planks
P1,Py,...,P, inE%d > 2, then Y\ we(P;) > 1.
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Keith M. Ball
3. K. Ball, The plank problem for symmetric bodies, Invent. Math. 104 (1991), 535-543.

It was Alexander [2] who noticed that Conjecture 1.2 is equivalent to the fol-
lowing generalization of a problem of Davenport.

CONJECTURE 1.4. If a convex body C in B¢, d > 2 is sliced by n—1 hyperplane
cuts, then there exists a piece that covers a translate of %C.

2. R. Alexander, A problem about lines and ovals, Amer. Math. Monthly 75 (1968)
482-487.

We note that the paper [7] of A. Bezdek and the author proves Conjecture 1.4
for successive hyperplane cuts (i.e., for hyperplane cuts when each cut divides one
piece). Also, the same paper ([7]) introduced two additional equivalent versions of
Conjecture 1.2. As they seem to be of independent interest we recall them following
the terminology used in [7].

7. A. Bezdek and K. Bezdek, Conway’s fried potato problem revisited, Arch. Math. 66/6
(1996), 522-528.



Let C and K be convex bodies in E? and let H be a hyperplane of E<.
The C-width of K parallel to H is denoted by wc (K, H) and is defined as

,l’LlLJ)EIé_IH_Ig The minimal C-width of K is denoted by wc(K) and is defined

as the minimum of wc (K, H), where the minimum is taken over all possible
hyperplanes H of E¢. Recall that the inradius of K is the radius of the largest
ball contained in K. It is quite natural then to introduce the C-inradius of K
as the factor of the largest positive homothetic copy of C, a translate of which
is contained in K. We need to do one more step to introduce the so-called
successive C-inradii of K as follows.

Let r be the C-inradius of K. For any 0 < p < r let the pC-rounded body
of K be denoted by K€ and be defined as the union of all translates of pC
that are covered by K. (See Fig. 7.1.)
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40. A. Bezdek and K. Bezdék, Conway’s fried potato problem revisited, Arch. Math. 66/6
(1996), 522-528.

Now, take a fixed integer m > 1. On the one hand, if p > 0 is sufficiently
small, then wc(K*C) > mp. On the other hand, wc(K"C) = r < mr. As
wc(KPC) is a decreasing continuous function of p > 0 and mp is a strictly
increasing continuous function of p, there exists a uniquely determined p > 0

such that
we (KPC) = mp.

This uniquely determined p is called the mth successive C-inradius of K and
is denoted by rc(K,m). (See Fig. 7.2.) Notice that rc(K,1) = r.

Fig. 7.2 The 3rd successive C-inradius of K: rc (K, 3) = p with the qharacter stic pro
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Now, the two equivalent versions of Conjecture 1.2 and Conjecture 1.4 intro-
duced in [7] can be phrased as follows.

CONJECTURE 1.5. If a convezx body K in E% d > 2 is covered by the planks
P1,Py, ..., Py, then 31 we(P;) > we(K) for any convex body C in E.

CONJECTURE 1.6. Let K and C be convex bodies in E? d > 2. If K is sliced
by n — 1 hyperplanes, then the minimum of the greatest C-inradius of the pieces is
equal to the nth successive C-inradius of K, i.e., it is rc(K,n).

6. A. Bezdek and K. Bezdek, A solution of Conway’s fried potato problem, Bull. London
Math. Soc. 27/5 (1995), 492—496.

7. A. Bezdek and K. Bezdek, Conway’s fried potato problem revisited, Arch. Math. 66/6
(1996), 522-528.

Recall that Theorem 1.3 gives a proof of (Conjecture 1.5 as well as) Conjecture
1.6 for centrally symmetric convex bodies K in E¢, d > 2 (with C being an arbitrary
convex body in E? d > 2). Another approach that leads to a partial solution of
Conjecture 1.6 was published in [7]. Namely, in that paper A. Bezdek and the
author proved the following theorem that (under the condition that C is a ball)
answers a question raised by Conway ([6]) as well as proves Conjecture 1.6 for .
successive hyperplane cuts. | AR

THEOREM 1.7. Let K and C be convex bodies in E¢, d > 2. If K is sliced Andras Bezdek
into n > 1 pieces by n — 1 successive hyperplane cuts (i.e., when each cut divides
one piece), then the minimum of the greatest C-inradius of the pieces is the nth
successive C-inradius of K (i.e., rc(K,n)). An optimal partition is achieved by

n — 1 parallel hyperplane cuts equally spaced along the minimal C-width of the
rc(K, n)C-rounded body of K.



Akopyan and Karasev ([1]) just very recently have proved a related partial re-
sult on Conjecture 1.5. Their theorem is based on a nice generalization of successive
hyperplane cuts. The more exact details are as follows. Under the convex partition
ViUVyU---UV,, of E¢ we understand the family V1, Vs,...,V,, of closed convex
sets having pairwise disjoint non-empty interiors in E¢ with V,;UV,U---UV,, = E%.
Then we say that the convex partition Vi U Vo U--- UV, of E¢ is an induc-
tive partition of E® if for any 1 < i < n, there exists an inductive partition
WU~ UW;_1 UW; 1 U---UW,, of E? such that V; ¢ W, for all j # i.
A partition into one part V; = E? is assumed to be inductive. We note that if
E? is sliced into n pieces by n — 1 successive hyperplane cuts (i.e., when each cut
divides one piece), then the pieces generate an inductive partition of EZ. Also, the
Voronoi cells of finitely many points of E¢ generate an inductive partition of E¢.
Now, the main theorem of [1] can be phrased as follows.

THEOREM 1.8. Let K and C be convex bodies in Ed d>2 and let V1 UV, U
..UV, be an inductive partition of E¢ such that int(V; ﬂK) ;é (Z) fO?” all 1 <1< n.
Then S re(VinK, 1) > re(K, 1). 7

Arseniy Akopyan

Roman Karasev

1. A. Akopyan and R. Karasev, Kadets-type theorems for partitions of a convex body,
Discrete Comput. Geom. 48 (2012), 766—776.



2. Extensions to Successive Inradii

First, we state the following stronger version of Theorem 1.7. Its proof is an
extension of the proof of Theorem 1.7 published in [7].

THEOREM 2.1. Let K and C be convex bodies in E?, d > 2 and let m be a
positive integer. If K s sliced into n > 1 pieces by n — 1 successive hyperplane
cuts (i.e., when each cut divides one piece), then the minimum of the greatest mth
successive C-inradius of the pieces is the (mn)th successive C-inradius of K (i.e.,
rc(K,mn)). An optimal partition is achieved by n — 1 parallel hyperplane cuts
equally spaced along the minimal C-width of the rc(K, mn)C-rounded body of K.

Second, the method of Akopyan and Karasev ([1]) can be extended to prove

THEOREM 2.2. Let K and C be convexr bodies in E*,d > 2 and let m be a
positive integer. If Vi1 U Vo U --- UV, is an inductive partition of E? such that
int(V; NK) # 0 for all1 <i<n, then Y . rc(ViNK,m) > rc(K,m).

COROLLARY 2.3. Let K and C be convex bodies in E¢,d > 2. If Vi U Vy U
---UV,, is an inductive partition of E? such that int(V;NK) # () for all1 <i < n,
then > we(V;NK) > we(K).

Finally, we close this section stating that Conjectures 1.2, 1.4, 1.5, and 1.6 are
all equivalent to the following two conjectures:

CONJECTURE 2.4. Let K and C be conver bodies in E¢,d > 2 and let m
be a positive integer. If K is covered by the planks P1,Ps, ..., P, in E?, then
Sorre(Pi,m) > re(K,m) or equivalently, i, we(P;) > mrc(K,m).

CONJECTURE 2.5. Let K and C be convex bodies in E* d > 2 and let the
positive integer m be given. If K is sliced by n — 1 hyperplanes, then the minimum
of the greatest mth successive C-inradius of the pieces is the (mn)th successive
C-inradius of K, i.e., it is rc(K, mn).



4.1. Successive Inradii Revisited. We give a somewhat different but still
equivalent description of r¢(K,m). If C is a convex body in E?, then

t+C,t+Xv+C,...,t+ N, v+C

is called a linear packing of m translates of C positioned parallel to the line {\v | A €
R} with direction vector v # o if the m translates of C are pairwise non-overlapping,
ie., if

(t+Xiv+intC) N (t+ \jv+intC) =0
holds for all 1 <4 # j < m (with A\; = 0). Furthermore, the line | C E? passing
through the origin o of E? is called a separating direction for the linear packing

t+C,t+Xv+C,...,t+ X, v+C
if
Pr;(t+ C),Pr(t + \av + C),...,Pri(t + A\, v+ C)
are pairwise non-overlapping intervals on [, where Pr; : E? — [ denotes the orthog-
onal projection of E? onto [. It is easy to see that every linear packing
t+C,t+Xv+C,...,t+ N, v+C

possesses at least one separating direction in E¢. Finally, let K be a convex body
in E? and let m > 1 be a positive integer. Then let 5 > 0 be the largest positive
real with the following property: for every line [ passing through the origin o in
E< there exists a linear packing of m translates of C lying in K and having [ as a
separating direction. It is straightforward to show that

p= TC(Kvm)'




4.2. On an Extension of a Helly-type Result of Klee. Recall the fol-
lowing Helly-type result of Klee [9]. Let F := {A; | i € I} be a family of compact
convex sets in E?, d > 2 containing at least d+ 1 members. Suppose C is a compact
convex set in E¢ such that the following holds: For each subfamily of d 4 1 sets in
F, there exists a translate of C that is contained in all d + 1 of them. Then there
exists a translate of C that is contained in all the members of F. In what follows
we give a proof of the following extension of Klee’s theorem to linear packings.

THEOREM 4.1. Let F := {A; | i € I} be a family of convex bodies in E?, d > 2
containing at least d + 1 members. Suppose C is a convex body in E? and m > 1 is
a positive integer moreover, | is a line passing through the origin o in E¢ such that
the following holds: For each subfamily of d + 1 convex bodies in F, there exists
a linear packing of m translates of C with separating direction | that is contained
i all d+ 1 of them. Then there exists a linear packing of m translates of C with
separating direction [ that is contained in all the members of F.

9. V. Klée, The critical set of a convex body, Amer. J. Math. 75 (1953), 178-188.



4.3. On Some Concave Functions of Successive Inradii. A rather straight-
forward extension of the method of Akopyan and Karasev ([1]) combined with The-
orem 4.1 gives the following statement. For the statement below as well as its proof
we extend the definition of the mth successive C-inradius of convex bodies K C E¢
via including all non-empty compact convex sets K C E? having intK = () with
the definition rc(K,m) := 0 and via including the empty set () with the definition
rc(f,m) := —cc.

THEOREM 4.2. Let K and C be convex bodies in E*, d > 2 and let m be a
positive integer. Moreover, let V1 U Vo U --- UV, be an inductive partition of E¢
and let K;(x) := KN (x + V;) for all x € E? and 1 <i < n. Then the function

r(x,m) := ZTC (K;(x),m)

is a concave function of x € E4.

COROLLARY 4.4. Let Ki,...,Ky, and C be convex bodies in E¢ and let m be
a positive integer. Then

re (y1 +Ki)Nn---N(yn + Kuy),m)

is a concave function of (yi,...,yn) € EN?,




4.4. Estimating Sums of Successive Inradii. Now, we are set for an in-
ductive proof of Theorem 2.2 on the number n of tiles in the relevant inductive
partition. The details are as follows. By Theorem 4.2 the function r(x,m) =
S re (Ki(x),m) is a concave function of x and so, X,. := {x € E¢ | r(x,m) >
—oo} is a closed convex set in E. If xg is a boundary point of X,., then at least one
K;(x9) = KN (x¢ + V;) must have an empty interior in E? say, intK;, (x¢) = 0 for
some 1 < ¢9p < n. Then take the inductive partition Wy U---UW,; _1 UW; 11 U
-+ UW,, of E? such that V; C W, for all j # ig. Now, it is easy to see that if
int (KN (x4 V;)) # 0 for some j # iy, then KN (xo + V;) = KN (xo + W;).
Thus,

rc (KN (xo+Vi),m) =) rc(Kn(xo+ W;),m)
i=1 j#i0

and therefore by induction we get that the inequality r(xq,m) > rc(K,m) holds
for all boundary points x¢ of X,.. Then this fact and the concavity of r(x,m)
imply in a straightforward way that the inequality r(x,m) > rc(K,m) holds for
all x € X, unless X, is a closed halfspace of E?. However, the latter case can
happen only when (each V,;, 1 <i < n contains the same halfspace and therefore)
n = 1. As Theorem 2.2 clearly holds for n = 1, our inductive proof of Theorem 2.2
is complete.



PROBLEM 7.1. Let K and C be convex bodies in E?, d > 2 and let m be a
positive integer. Prove or disprove that if V1 U Vo U ... UV, is a conver parti-
tion (resp., covering) of B¢ such that int(V; NK) # 0 for all 1 < i < n, then
S ire(VinK,m) > rc(K,m).

PROBLEM 7.2. Let K and C be convex bodies in E¢, d > 2 and let m be a
positive integer. Prove or disprove that if V1 U Vo U...UV,, is a convex partition
(resp., covering) of B¢ such that int(V;NK) # 0 for all 1 < i < n, then the greatest
mth successive C-inradius of the pieces V;NK, i =1,2,...,n is at least rc(K, mn).

Theorem 7.3.1 Let the ball B of the real Hilbert space H be covered by the
convex bodies C1,C,,...,C, in H. Then

n

) r(CinB) >1(B).

1=1

201. V. Kadets, Coveringé by convex bodies and inscribed balls, Proc. Amer. Math.
Soc. 133/5 (2005), 1491-1495.

246. D. Ohmann, Uber die Summe der Inkreisradien bei I"Jberdeckung, Math. Annalen Vladlmlr Kadets
125 (1953), 350-354.

42. A. Bezdek, On a generalization of Tarski’s plank problem, Discrete Comput. Geom.
38 (2007), 189-200.

Problem 7.3.2 Let the ball B be covered by the convex bodies C1,Cs,...,C,
i an arbitrary Banach space. Prove or disprove that

n

> r(C;NB) > 1(B).

=1l



Theorem 7.3.3 If the spherically convex bodies K+, ..., K,, cover the spher-
ical ball B of radius r(B) > Z in S%,d > 2, then

> r(Ki) > r(B).

=1

Forr(B) = % the stronger inequality Y, 7(K;NB) > r(B) holds. Moreover,
equality for r(B) = m or r(B) = 5 holds if and only if K1, ..., K,, are lunes

. . . . . . . . Rolf Schneider
with common ridge which have pairwise no common interior points.

Theorem 7.3.3 is a consequence of the following result proved by Schneider
and the author in [83]. Recall that Svoly(...) denotes the spherical Lebesgue
measure on S?, and recall that (d 4+ 1)wg;1 = Svoly(S?).

Theorem 7.3.4 If K is a spherically convex body in S¢,d > 2, then

(d + Dwgt1 .

Svolg(K) < (K).
n Lectures on Sphere
Arrangements -
. c . . the Discrete
FEquality holds if and only if K s a lune. Geomohitene

83. K. Bezdek and R. Schneider, Covering large balls with convex sets in spherical space,
Beitrage Algebra Geom. 51/1 (2010), 229-235.

@ Springer



Indeed, Theorem 7.3.4 implies Theorem 7.3.3 as follows. If B = S?; that
is, the spherically convex bodies K, ..., K,, cover S¢, then

n

(d+ Dwgy1 < z”: Svolg(K;) < (d+ Dwary ZT(Kz‘),

, s :
1=1 =1

and the stated inequality follows. In general, when B is different from S¢,
let B’ C S? be the spherical ball of radius @ — 7(B) centered at the point
antipodal to the center of B. As the spherically convex bodies B, K1, ..., K,
cover S¢, the inequality just proved shows that

T —r(B)+ Z r(K;) >,

and the stated inequality follows. If »(B) = 7, then K; N B,... K, N B
are spherically convex bodies and as B, K; N B, ..., K, N B cover S? , the
stronger inequality follows. The assertion about the equality sign for the case
when r(B) = 7 or r(B) = 7 follows easily.

We close this section with the following question that bridges Theo-

rem 7.3.3 to Theorem 7.3.1:

Problem 7.3.5 Let the spherically convez bodies K1, ...,K,, cover the spher-
ical ball B of radius r(B) < 5 in S<.d > 2. Then prove or disprove that

r(K;) > r(B).

n

1



