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PLANK THEOREMS VIA SUCCESSIVE INRADII

Károly Bezdek

Abstract. In the 1930’s, Tarski introduced his plank problem at a time when

the field discrete geometry was about to born. It is quite remarkable that

Tarski’s question and its variants continue to generate interest in the geometric

as well as analytic aspects of coverings by planks in the present time as well.

Besides giving a short survey on the status of the affine plank conjecture of

Bang (1950) we prove some new partial results for the successive inradii of the

convex bodies involved. The underlying geometric structures are successive

hyperplane cuts introduced several years ago by Conway and inductive tilings

introduced recently by Akopyan and Karasev.

1. Introduction

As usual, a convex body of the Euclidean space Ed is a compact convex set with
non-empty interior. Let C ⊂ Ed be a convex body, and let H ⊂ Ed be a hyperplane.
Then the distance w(C, H) between the two supporting hyperplanes of C parallel
to H is called the width of C parallel to H. Moreover, the smallest width of C
parallel to hyperplanes of Ed is called the minimal width of C and is denoted by
w(C).

Recall that in the 1930’s, Tarski posed what came to be known as the plank
problem. A plank P in Ed is the (closed) set of points between two distinct parallel
hyperplanes. The width w(P) of P is simply the distance between the two boundary
hyperplanes of P. Tarski conjectured that if a convex body of minimal width w is
covered by a collection of planks in Ed, then the sum of the widths of these planks
is at least w. This conjecture was proved by Bang in his memorable paper [5].
(In fact, the proof presented in that paper is a simplification and generalization of
the proof published by Bang somewhat earlier in [4].) Thus, we call the following
statement Bang’s plank theorem.

Theorem 1.1. If the convex body C is covered by the planks P1,P2, . . . ,Pn in
Ed

, d ≥ 2 (i.e., C ⊂ P1 ∪P2 ∪ · · · ∪Pn ⊂ Ed), then
�n

i=1 w(Pi) ≥ w(C).

In [5], Bang raised the following stronger version of Tarski’s plank problem
called the affine plank problem. We phrase it via the following definition. Let C
be a convex body and let P be a plank with boundary hyperplanes parallel to the
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hyperplane H in Ed. We define the C-width of the plank P as
w(P)

w(C,H)
and label it

wC(P). (This notion was introduced by Bang [5] under the name “relative width”.)

Conjecture 1.2. If the convex body C is covered by the planks P1,P2, . . . ,

Pn in Ed
, d ≥ 2, then

�
n

i=1
wC(Pi) ≥ 1.

The special case of Conjecture 1.2, when the convex body to be covered is

centrally symmetric, has been proved by Ball in [3]. Thus, the following is Ball’s

plank theorem.

Theorem 1.3. If the centrally symmetric convex body C is covered by the planks
P1,P2, . . . ,Pn in Ed

, d ≥ 2, then
�

n

i=1
wC(Pi) ≥ 1.

It was Alexander [2] who noticed that Conjecture 1.2 is equivalent to the fol-

lowing generalization of a problem of Davenport.

Conjecture 1.4. If a convex body C in Ed
, d ≥ 2 is sliced by n−1 hyperplane

cuts, then there exists a piece that covers a translate of 1

n
C.

We note that the paper [7] of A. Bezdek and the author proves Conjecture 1.4

for successive hyperplane cuts (i.e., for hyperplane cuts when each cut divides one

piece). Also, the same paper ([7]) introduced two additional equivalent versions of

Conjecture 1.2. As they seem to be of independent interest we recall them following

the terminology used in [7].
Let C and K be convex bodies in Ed and let H be a hyperplane of Ed. The

C-width of K parallel to H is denoted by wC(K, H) and is defined as
w(K,H)

w(C,H)
.

The minimal C-width of K is denoted by wC(K) and is defined as the minimum

of wC(K, H), where the minimum is taken over all possible hyperplanes H of Ed.

Recall that the inradius of K is the radius of the largest ball contained in K. It

is quite natural then to introduce the C-inradius of K as the factor of the largest

positive homothetic copy of C, a translate of which is contained in K. We need to

do one more step to introduce the so-called successive C-inradii of K as follows.

Let r be the C-inradius of K. For any 0 < ρ ≤ r let the ρC-rounded body of
K be denoted by KρC and be defined as the union of all translates of ρC that are

covered by K.

Now, take a fixed integer m ≥ 1. On the one hand, if ρ > 0 is sufficiently small,

then wC(KρC) > mρ. On the other hand, wC(KrC) = r ≤ mr. As wC(KρC) is a

decreasing continuous function of ρ > 0 and mρ is a strictly increasing continuous

function of ρ, there exists a uniquely determined ρ > 0 such that

wC(K
ρC

) = mρ.

This uniquely determined ρ is called the mth successive C-inradius of K and is

denoted by rC(K,m).

Now, the two equivalent versions of Conjecture 1.2 and Conjecture 1.4 intro-

duced in [7] can be phrased as follows.

Conjecture 1.5. If a convex body K in Ed
, d ≥ 2 is covered by the planks

P1,P2, . . . ,Pn, then
�

n

i=1
wC(Pi) ≥ wC(K) for any convex body C in Ed.

Conjecture 1.6. Let K and C be convex bodies in Ed
, d ≥ 2. If K is sliced

by n− 1 hyperplanes, then the minimum of the greatest C-inradius of the pieces is
equal to the nth successive C-inradius of K, i.e., it is rC(K, n).

8 KÁROLY BEZDEK

Problem 7.1. Let K and C be convex bodies in Ed, d ≥ 2 and let m be a
positive integer. Prove or disprove that if V1 ∪ V2 ∪ . . . ∪ Vn is a convex parti-
tion (resp., covering) of Ed such that int(Vi ∩ K) �= ∅ for all 1 ≤ i ≤ n, then�n

i=1
rC(Vi ∩K,m) ≥ rC(K,m).

Next observe that (7.1) implies in a straightforward way that if K and C are
convex bodies in Ed and V1 ∪ V2 ∪ . . . ∪ Vn is an inductive covering of Ed such
that int(Vi ∩ K) �= ∅ for all 1 ≤ i ≤ n, then the greatest mth successive C-
inradius of the pieces Vi∩K, i = 1, 2, . . . , n is at least 1

nrC(K,m). As the sequence
mrC(K,m),m = 1, 2, . . . is an increasing one, therefore 1

nrC(K,m) ≤ rC(K,mn)
raising the following question (see also Conjecture 2.5).

Problem 7.2. Let K and C be convex bodies in Ed, d ≥ 2 and let m be a
positive integer. Prove or disprove that if V1 ∪V2 ∪ . . . ∪Vn is a convex partition
(resp., covering) of Ed such that int(Vi∩K) �= ∅ for all 1 ≤ i ≤ n, then the greatest
mth successive C-inradius of the pieces Vi∩K, i = 1, 2, . . . , n is at least rC(K,mn).

References

1. A. Akopyan and R. Karasev, Kadets-type theorems for partitions of a convex body,

Discrete Comput. Geom. 48 (2012), 766–776.

2. R. Alexander, A problem about lines and ovals, Amer. Math. Monthly 75 (1968),

482–487.

3. K. Ball, The plank problem for symmetric bodies, Invent. Math. 104 (1991), 535–543.

4. T. Bang, On covering by parallel-strips, Mat. Tidsskr. B. 1950 (1950), 49–53.

5. T. Bang, A solution of the “Plank problem”, Proc. Am. Math. Soc. 2 (1951), 990–993.

6. A. Bezdek and K. Bezdek, A solution of Conway’s fried potato problem, Bull. London
Math. Soc. 27/5 (1995), 492–496.

7. A. Bezdek and K. Bezdek, Conway’s fried potato problem revisited, Arch. Math. 66/6
(1996), 522–528.

Department of Mathematics and, Statistics, University of Calgary, Calgary, Al-
berta, Canada T2N 1N4

E-mail address: bezdek@math.ucalgary.ca



13-11-26 4 
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wC(Pi) ≥ wC(K) for any convex body C in Ed.

Conjecture 1.6. Let K and C be convex bodies in Ed
, d ≥ 2. If K is sliced

by n− 1 hyperplanes, then the minimum of the greatest C-inradius of the pieces is
equal to the nth successive C-inradius of K, i.e., it is rC(K, n).

8 KÁROLY BEZDEK

Problem 7.1. Let K and C be convex bodies in Ed, d ≥ 2 and let m be a
positive integer. Prove or disprove that if V1 ∪ V2 ∪ . . . ∪ Vn is a convex parti-
tion (resp., covering) of Ed such that int(Vi ∩ K) �= ∅ for all 1 ≤ i ≤ n, then�n

i=1
rC(Vi ∩K,m) ≥ rC(K,m).

Next observe that (7.1) implies in a straightforward way that if K and C are
convex bodies in Ed and V1 ∪ V2 ∪ . . . ∪ Vn is an inductive covering of Ed such
that int(Vi ∩ K) �= ∅ for all 1 ≤ i ≤ n, then the greatest mth successive C-
inradius of the pieces Vi∩K, i = 1, 2, . . . , n is at least 1

nrC(K,m). As the sequence
mrC(K,m),m = 1, 2, . . . is an increasing one, therefore 1

nrC(K,m) ≤ rC(K,mn)
raising the following question (see also Conjecture 2.5).

Problem 7.2. Let K and C be convex bodies in Ed, d ≥ 2 and let m be a
positive integer. Prove or disprove that if V1 ∪V2 ∪ . . . ∪Vn is a convex partition
(resp., covering) of Ed such that int(Vi∩K) �= ∅ for all 1 ≤ i ≤ n, then the greatest
mth successive C-inradius of the pieces Vi∩K, i = 1, 2, . . . , n is at least rC(K,mn).
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n�

i=1

w(Pi) ≥ w(C).

In [23], Bang raised the following stronger version of Tarski’s plank prob-
lem called the affine plank problem. We phrase it via the following definition.
Let C be a convex body and let P be a plank with boundary hyperplanes
parallel to the hyperplane H in Ed. We define the C-width of the plank P as
w(P)

w(C,H) and label it wC(P). (This notion was introduced by Bang [23] under

the name “relative width”.)

Conjecture 7.1.2 If the convex body C is covered by the planks P1,P2, . . . ,

Pn in Ed
, d ≥ 2, then

n�

i=1

wC(Pi) ≥ 1.

The special case of Conjecture 7.1.2, when the convex body to be covered
is centrally symmetric, has been proved by Ball in [17]. Thus, the following
is Ball’s plank theorem.

Theorem 7.1.3 If the centrally symmetric convex body C is covered by the
planks P1,P2, . . . ,Pn in Ed

, d ≥ 2, then

n�

i=1

wC(Pi) ≥ 1.

From the point of view of discrete geometry it seems natural to mention
that after proving Theorem 7.1.3 Ball [18] used Bang’s proof of Theorem 7.1.1
to derive a new argument for an improvement of the Davenport–Rogers lower
bound on the density of economical sphere lattice packings.

It was Alexander [4] who noticed that Conjecture 7.1.2 is equivalent to the
following generalization of a problem of Davenport.

Conjecture 7.1.4 If a convex body C in Ed
, d ≥ 2 is sliced by n− 1 hyper-

plane cuts, then there exists a piece that covers a translate of 1
n
C.

We note that the paper [40] of A. Bezdek and the author proves Conjec-
ture 7.1.4 for successive hyperplane cuts (i.e., for hyperplane cuts when each
cut divides one piece). Also, the same paper ([40]) introduced two additional
equivalent versions of Conjecture 7.1.2. As they seem to be of independent
interest we recall them following the terminology used in [40].

Let C and K be convex bodies in Ed and let H be a hyperplane of Ed.
The C-width of K parallel to H is denoted by wC(K, H) and is defined as
w(K,H)
w(C,H) . The minimal C-width of K is denoted by wC(K) and is defined

as the minimum of wC(K, H), where the minimum is taken over all possible
hyperplanes H of Ed. Recall that the inradius of K is the radius of the largest
ball contained in K. It is quite natural then to introduce the C-inradius of K
7.1 Plank Theorems - Old and New 147

as the factor of the largest positive homothetic copy of C, a translate of which

is contained in K. We need to do one more step to introduce the so-called

successive C-inradii of K as follows.

Let r be the C-inradius of K. For any 0 < ρ ≤ r let the ρC-rounded body
of K be denoted by KρC and be defined as the union of all translates of ρC
that are covered by K. (See Fig. 7.1.)
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Fig. 7.1 The ρC-rounded body of K: KρC.

Now, take a fixed integer m ≥ 1. On the one hand, if ρ > 0 is sufficiently

small, then wC(KρC) > mρ. On the other hand, wC(KrC) = r ≤ mr. As
wC(KρC) is a decreasing continuous function of ρ > 0 and mρ is a strictly

increasing continuous function of ρ, there exists a uniquely determined ρ > 0

such that

wC(K
ρC

) = mρ.

This uniquely determined ρ is called the mth successive C-inradius of K and

is denoted by rC(K,m). (See Fig. 7.2.) Notice that rC(K, 1) = r.

!"

" !

Fig. 7.2 The 3rd successiveC-inradius ofK: rC(K, 3) = ρ with the characteristic property

wC(KρC) = 3ρ.

For the sake of completeness we give a somewhat different but still equiv-

alent description of rC(K,m). If C is a convex body in Ed, then
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hyperplane H in Ed. We define the C-width of the plank P as
w(P)

w(C,H)
and label it

wC(P). (This notion was introduced by Bang [5] under the name “relative width”.)

Conjecture 1.2. If the convex body C is covered by the planks P1,P2, . . . ,

Pn in Ed
, d ≥ 2, then

�
n

i=1
wC(Pi) ≥ 1.

The special case of Conjecture 1.2, when the convex body to be covered is

centrally symmetric, has been proved by Ball in [3]. Thus, the following is Ball’s

plank theorem.

Theorem 1.3. If the centrally symmetric convex body C is covered by the planks
P1,P2, . . . ,Pn in Ed

, d ≥ 2, then
�

n

i=1
wC(Pi) ≥ 1.

It was Alexander [2] who noticed that Conjecture 1.2 is equivalent to the fol-

lowing generalization of a problem of Davenport.

Conjecture 1.4. If a convex body C in Ed
, d ≥ 2 is sliced by n−1 hyperplane

cuts, then there exists a piece that covers a translate of 1

n
C.

We note that the paper [7] of A. Bezdek and the author proves Conjecture 1.4

for successive hyperplane cuts (i.e., for hyperplane cuts when each cut divides one

piece). Also, the same paper ([7]) introduced two additional equivalent versions of

Conjecture 1.2. As they seem to be of independent interest we recall them following

the terminology used in [7].
Let C and K be convex bodies in Ed and let H be a hyperplane of Ed. The

C-width of K parallel to H is denoted by wC(K, H) and is defined as
w(K,H)

w(C,H)
.

The minimal C-width of K is denoted by wC(K) and is defined as the minimum

of wC(K, H), where the minimum is taken over all possible hyperplanes H of Ed.

Recall that the inradius of K is the radius of the largest ball contained in K. It

is quite natural then to introduce the C-inradius of K as the factor of the largest

positive homothetic copy of C, a translate of which is contained in K. We need to

do one more step to introduce the so-called successive C-inradii of K as follows.

Let r be the C-inradius of K. For any 0 < ρ ≤ r let the ρC-rounded body of
K be denoted by KρC and be defined as the union of all translates of ρC that are

covered by K.

Now, take a fixed integer m ≥ 1. On the one hand, if ρ > 0 is sufficiently small,

then wC(KρC) > mρ. On the other hand, wC(KrC) = r ≤ mr. As wC(KρC) is a

decreasing continuous function of ρ > 0 and mρ is a strictly increasing continuous

function of ρ, there exists a uniquely determined ρ > 0 such that

wC(K
ρC

) = mρ.

This uniquely determined ρ is called the mth successive C-inradius of K and is

denoted by rC(K,m).

Now, the two equivalent versions of Conjecture 1.2 and Conjecture 1.4 intro-

duced in [7] can be phrased as follows.

Conjecture 1.5. If a convex body K in Ed
, d ≥ 2 is covered by the planks

P1,P2, . . . ,Pn, then
�

n

i=1
wC(Pi) ≥ wC(K) for any convex body C in Ed.

Conjecture 1.6. Let K and C be convex bodies in Ed
, d ≥ 2. If K is sliced

by n− 1 hyperplanes, then the minimum of the greatest C-inradius of the pieces is
equal to the nth successive C-inradius of K, i.e., it is rC(K, n).

PLANK THEOREMS VIA SUCCESSIVE INRADII 3

Recall that Theorem 1.3 gives a proof of (Conjecture 1.5 as well as) Conjecture

1.6 for centrally symmetric convex bodies K in Ed, d ≥ 2 (with C being an arbitrary

convex body in Ed, d ≥ 2). Another approach that leads to a partial solution of

Conjecture 1.6 was published in [7]. Namely, in that paper A. Bezdek and the

author proved the following theorem that (under the condition that C is a ball)

answers a question raised by Conway ([6]) as well as proves Conjecture 1.6 for

successive hyperplane cuts.

Theorem 1.7. Let K and C be convex bodies in Ed, d ≥ 2. If K is sliced
into n ≥ 1 pieces by n − 1 successive hyperplane cuts (i.e., when each cut divides
one piece), then the minimum of the greatest C-inradius of the pieces is the nth
successive C-inradius of K (i.e., rC(K, n)). An optimal partition is achieved by
n − 1 parallel hyperplane cuts equally spaced along the minimal C-width of the
rC(K, n)C-rounded body of K.

Akopyan and Karasev ([1]) just very recently have proved a related partial re-

sult on Conjecture 1.5. Their theorem is based on a nice generalization of successive

hyperplane cuts. The more exact details are as follows. Under the convex partition
V1∪V2∪ · · ·∪Vn of Ed

we understand the family V1,V2, . . . ,Vn of closed convex

sets having pairwise disjoint non-empty interiors in Ed
withV1∪V2∪· · ·∪Vn = Ed

.

Then we say that the convex partition V1 ∪ V2 ∪ · · · ∪ Vn of Ed
is an induc-

tive partition of Ed
if for any 1 ≤ i ≤ n, there exists an inductive partition

W1 ∪ · · · ∪ Wi−1 ∪ Wi+1 ∪ · · · ∪ Wn of Ed
such that Vj ⊂ Wj for all j �= i.

A partition into one part V1 = Ed
is assumed to be inductive. We note that if

Ed
is sliced into n pieces by n − 1 successive hyperplane cuts (i.e., when each cut

divides one piece), then the pieces generate an inductive partition of Ed
. Also, the

Voronoi cells of finitely many points of Ed
generate an inductive partition of Ed

.

Now, the main theorem of [1] can be phrased as follows.

Theorem 1.8. Let K and C be convex bodies in Ed, d ≥ 2 and let V1 ∪V2 ∪
· · ·∪Vn be an inductive partition of Ed such that int(Vi∩K) �= ∅ for all 1 ≤ i ≤ n.
Then

�n
i=1 rC(Vi ∩K, 1) ≥ rC(K, 1).

2. Extensions to Successive Inradii

First, we state the following stronger version of Theorem 1.7. Its proof is an

extension of the proof of Theorem 1.7 published in [7].

Theorem 2.1. Let K and C be convex bodies in Ed, d ≥ 2 and let m be a
positive integer. If K is sliced into n ≥ 1 pieces by n − 1 successive hyperplane
cuts (i.e., when each cut divides one piece), then the minimum of the greatest mth
successive C-inradius of the pieces is the (mn)th successive C-inradius of K (i.e.,
rC(K,mn)). An optimal partition is achieved by n − 1 parallel hyperplane cuts
equally spaced along the minimal C-width of the rC(K,mn)C-rounded body of K.

Second, the method of Akopyan and Karasev ([1]) can be extended to prove

the following stronger version of Theorem 1.8. In fact, that approach extends also

the relavant additional theorems of Akopyan and Karasev stated in [1] and used in

their proof of Theorem 1.8. However, in this paper following the recommendation

of the referee, we derive the next theorem directly from Theorem 1.8.

8 KÁROLY BEZDEK

Problem 7.1. Let K and C be convex bodies in Ed, d ≥ 2 and let m be a
positive integer. Prove or disprove that if V1 ∪ V2 ∪ . . . ∪ Vn is a convex parti-
tion (resp., covering) of Ed such that int(Vi ∩ K) �= ∅ for all 1 ≤ i ≤ n, then�n

i=1
rC(Vi ∩K,m) ≥ rC(K,m).

Next observe that (7.1) implies in a straightforward way that if K and C are
convex bodies in Ed and V1 ∪ V2 ∪ . . . ∪ Vn is an inductive covering of Ed such
that int(Vi ∩ K) �= ∅ for all 1 ≤ i ≤ n, then the greatest mth successive C-
inradius of the pieces Vi∩K, i = 1, 2, . . . , n is at least 1

nrC(K,m). As the sequence
mrC(K,m),m = 1, 2, . . . is an increasing one, therefore 1

nrC(K,m) ≤ rC(K,mn)
raising the following question (see also Conjecture 2.5).

Problem 7.2. Let K and C be convex bodies in Ed, d ≥ 2 and let m be a
positive integer. Prove or disprove that if V1 ∪V2 ∪ . . . ∪Vn is a convex partition
(resp., covering) of Ed such that int(Vi∩K) �= ∅ for all 1 ≤ i ≤ n, then the greatest
mth successive C-inradius of the pieces Vi∩K, i = 1, 2, . . . , n is at least rC(K,mn).
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PLANK THEOREMS VIA SUCCESSIVE INRADII 3

Recall that Theorem 1.3 gives a proof of (Conjecture 1.5 as well as) Conjecture

1.6 for centrally symmetric convex bodies K in Ed, d ≥ 2 (with C being an arbitrary

convex body in Ed, d ≥ 2). Another approach that leads to a partial solution of

Conjecture 1.6 was published in [7]. Namely, in that paper A. Bezdek and the

author proved the following theorem that (under the condition that C is a ball)

answers a question raised by Conway ([6]) as well as proves Conjecture 1.6 for

successive hyperplane cuts.

Theorem 1.7. Let K and C be convex bodies in Ed, d ≥ 2. If K is sliced
into n ≥ 1 pieces by n − 1 successive hyperplane cuts (i.e., when each cut divides
one piece), then the minimum of the greatest C-inradius of the pieces is the nth
successive C-inradius of K (i.e., rC(K, n)). An optimal partition is achieved by
n − 1 parallel hyperplane cuts equally spaced along the minimal C-width of the
rC(K, n)C-rounded body of K.

Akopyan and Karasev ([1]) just very recently have proved a related partial re-

sult on Conjecture 1.5. Their theorem is based on a nice generalization of successive

hyperplane cuts. The more exact details are as follows. Under the convex partition
V1∪V2∪ · · ·∪Vn of Ed

we understand the family V1,V2, . . . ,Vn of closed convex

sets having pairwise disjoint non-empty interiors in Ed
withV1∪V2∪· · ·∪Vn = Ed

.

Then we say that the convex partition V1 ∪ V2 ∪ · · · ∪ Vn of Ed
is an induc-

tive partition of Ed
if for any 1 ≤ i ≤ n, there exists an inductive partition

W1 ∪ · · · ∪ Wi−1 ∪ Wi+1 ∪ · · · ∪ Wn of Ed
such that Vj ⊂ Wj for all j �= i.

A partition into one part V1 = Ed
is assumed to be inductive. We note that if

Ed
is sliced into n pieces by n − 1 successive hyperplane cuts (i.e., when each cut

divides one piece), then the pieces generate an inductive partition of Ed
. Also, the

Voronoi cells of finitely many points of Ed
generate an inductive partition of Ed

.

Now, the main theorem of [1] can be phrased as follows.

Theorem 1.8. Let K and C be convex bodies in Ed, d ≥ 2 and let V1 ∪V2 ∪
· · ·∪Vn be an inductive partition of Ed such that int(Vi∩K) �= ∅ for all 1 ≤ i ≤ n.
Then

�n
i=1 rC(Vi ∩K, 1) ≥ rC(K, 1).

2. Extensions to Successive Inradii

First, we state the following stronger version of Theorem 1.7. Its proof is an

extension of the proof of Theorem 1.7 published in [7].

Theorem 2.1. Let K and C be convex bodies in Ed, d ≥ 2 and let m be a
positive integer. If K is sliced into n ≥ 1 pieces by n − 1 successive hyperplane
cuts (i.e., when each cut divides one piece), then the minimum of the greatest mth
successive C-inradius of the pieces is the (mn)th successive C-inradius of K (i.e.,
rC(K,mn)). An optimal partition is achieved by n − 1 parallel hyperplane cuts
equally spaced along the minimal C-width of the rC(K,mn)C-rounded body of K.

Second, the method of Akopyan and Karasev ([1]) can be extended to prove

the following stronger version of Theorem 1.8. In fact, that approach extends also

the relavant additional theorems of Akopyan and Karasev stated in [1] and used in

their proof of Theorem 1.8. However, in this paper following the recommendation

of the referee, we derive the next theorem directly from Theorem 1.8.
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Problem 7.1. Let K and C be convex bodies in Ed, d ≥ 2 and let m be a
positive integer. Prove or disprove that if V1 ∪ V2 ∪ . . . ∪ Vn is a convex parti-
tion (resp., covering) of Ed such that int(Vi ∩ K) �= ∅ for all 1 ≤ i ≤ n, then�n

i=1
rC(Vi ∩K,m) ≥ rC(K,m).

Next observe that (7.1) implies in a straightforward way that if K and C are
convex bodies in Ed and V1 ∪ V2 ∪ . . . ∪ Vn is an inductive covering of Ed such
that int(Vi ∩ K) �= ∅ for all 1 ≤ i ≤ n, then the greatest mth successive C-
inradius of the pieces Vi∩K, i = 1, 2, . . . , n is at least 1

nrC(K,m). As the sequence
mrC(K,m),m = 1, 2, . . . is an increasing one, therefore 1

nrC(K,m) ≤ rC(K,mn)
raising the following question (see also Conjecture 2.5).

Problem 7.2. Let K and C be convex bodies in Ed, d ≥ 2 and let m be a
positive integer. Prove or disprove that if V1 ∪V2 ∪ . . . ∪Vn is a convex partition
(resp., covering) of Ed such that int(Vi∩K) �= ∅ for all 1 ≤ i ≤ n, then the greatest
mth successive C-inradius of the pieces Vi∩K, i = 1, 2, . . . , n is at least rC(K,mn).
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Then
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i=1 rC(Vi ∩K, 1) ≥ rC(K, 1).
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First, we state the following stronger version of Theorem 1.7. Its proof is an

extension of the proof of Theorem 1.7 published in [7].

Theorem 2.1. Let K and C be convex bodies in Ed, d ≥ 2 and let m be a
positive integer. If K is sliced into n ≥ 1 pieces by n − 1 successive hyperplane
cuts (i.e., when each cut divides one piece), then the minimum of the greatest mth
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rC(K,mn)). An optimal partition is achieved by n − 1 parallel hyperplane cuts
equally spaced along the minimal C-width of the rC(K,mn)C-rounded body of K.

Second, the method of Akopyan and Karasev ([1]) can be extended to prove

the following stronger version of Theorem 1.8. In fact, that approach extends also

the relavant additional theorems of Akopyan and Karasev stated in [1] and used in

their proof of Theorem 1.8. However, in this paper following the recommendation

of the referee, we derive the next theorem directly from Theorem 1.8.
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Theorem 2.2. Let K and C be convex bodies in Ed
, d ≥ 2 and let m be a

positive integer. If V1 ∪ V2 ∪ · · · ∪ Vn is an inductive partition of Ed such that
int(Vi ∩K) �= ∅ for all 1 ≤ i ≤ n, then

�n
i=1

rC(Vi ∩K,m) ≥ rC(K,m).

Corollary 2.3. Let K and C be convex bodies in Ed
, d ≥ 2. If V1 ∪ V2 ∪

· · ·∪Vn is an inductive partition of Ed such that int(Vi∩K) �= ∅ for all 1 ≤ i ≤ n,
then

�n
i=1

wC(Vi ∩K) ≥ wC(K).

For the sake of completeness we mention that in two dimensions one can state
a bit more. Namely, recall that Akopyan and Karasev ([1]) proved the following:
Let K and C be convex bodies in E2 and let V1∪V2∪ · · ·∪Vn = K be a partition
of K into convex bodies Vi, 1 ≤ i ≤ n. Then

�n
i=1

rC(Vi, 1) ≥ rC(K, 1). Now,
exactly the same way as Theorem 2.2 is derived from Theorem 1.8, it follows that�n

i=1
rC(Vi,m) ≥ rC(K,m) holds for any positive integer m.

Finally, we close this section stating that Conjectures 1.2, 1.4, 1.5, and 1.6 are
all equivalent to the following two conjectures:

Conjecture 2.4. Let K and C be convex bodies in Ed
, d ≥ 2 and let m

be a positive integer. If K is covered by the planks P1,P2, . . . ,Pn in Ed, then�n
i=1

rC(Pi,m) ≥ rC(K,m) or equivalently,
�n

i=1
wC(Pi) ≥ mrC(K,m).

Conjecture 2.5. Let K and C be convex bodies in Ed
, d ≥ 2 and let the

positive integer m be given. If K is sliced by n− 1 hyperplanes, then the minimum
of the greatest mth successive C-inradius of the pieces is the (mn)th successive
C-inradius of K, i.e., it is rC(K,mn).

In the rest of the paper we prove the claims of this section.

3. Proof of Theorem 2.1

3.1. On Coverings of Convex Bodies by Two Planks. On the one hand,
the following statement is an extension to higher dimensions of Theorem 4 in [2].
On the other hand, the proof presented below is based on Theorem 4 of [2].

Lemma 3.1. If a convex body K in Ed
, d ≥ 2 is covered by the planks P1 and

P2, then wC(P1) + wC(P2) ≥ wC(K) for any convex body C in Ed.

Proof. Let H1 (resp., H2) be one of the two hyperplanes which bound the
plank P1 (resp., P2). If H1 and H2 are translates of each other, then the claim is
obviously true. Thus, without loss of generality we may assume that L := H1 ∩H2

is a (d − 2)-dimensional affine subspace of Ed. Let E2 be the 2-dimensional linear
subspace of Ed that is orthogonal to L. If (·)� denotes the (orthogonal) projection of
Ed parallel to L onto E2, then obviously, wC�(P�

1) = wC(P1), wC�(P�
2) = wC(P2)

and wC�(K�) ≥ wC(K). Thus, it is sufficient to prove that

wC�(P�
1) + wC�(P�

2) ≥ wC�(K�).

In other words, it is sufficient to prove Lemma 3.1 for d = 2. Hence, in the rest of
the proof, K,C,P1,P2, H1, and H2 mean the sets introduced and defined above,
however, for d = 2. Now, we can make the following easy observation

wC(P1) + wC(P2) =
w(P1)

w(C, H1)
+

w(P2)

w(C, H2)

=
w(P1)

w(K, H1)

w(K, H1)

w(C, H1)
+

w(P2)

w(K, H2)

w(K, H2)

w(C, H2)
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On the other hand, the proof presented below is based on Theorem 4 of [2].

Lemma 3.1. If a convex body K in Ed
, d ≥ 2 is covered by the planks P1 and

P2, then wC(P1) + wC(P2) ≥ wC(K) for any convex body C in Ed.

Proof. Let H1 (resp., H2) be one of the two hyperplanes which bound the
plank P1 (resp., P2). If H1 and H2 are translates of each other, then the claim is
obviously true. Thus, without loss of generality we may assume that L := H1 ∩H2

is a (d − 2)-dimensional affine subspace of Ed. Let E2 be the 2-dimensional linear
subspace of Ed that is orthogonal to L. If (·)� denotes the (orthogonal) projection of
Ed parallel to L onto E2, then obviously, wC�(P�

1) = wC(P1), wC�(P�
2) = wC(P2)

and wC�(K�) ≥ wC(K). Thus, it is sufficient to prove that

wC�(P�
1) + wC�(P�

2) ≥ wC�(K�).

In other words, it is sufficient to prove Lemma 3.1 for d = 2. Hence, in the rest of
the proof, K,C,P1,P2, H1, and H2 mean the sets introduced and defined above,
however, for d = 2. Now, we can make the following easy observation

wC(P1) + wC(P2) =
w(P1)

w(C, H1)
+

w(P2)

w(C, H2)

=
w(P1)

w(K, H1)

w(K, H1)

w(C, H1)
+

w(P2)

w(K, H2)

w(K, H2)

w(C, H2)



13-11-26 10 
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4. Proof of Theorem 2.2

4.1. Successive Inradii Revisited. We give a somewhat different but still

equivalent description of rC(K,m). If C is a convex body in Ed
, then

t+C, t+ λ2v +C, . . . , t+ λmv +C

is called a linear packing ofm translates ofC positioned parallel to the line {λv | λ ∈
R} with direction vector v �= o if them translates ofC are pairwise non-overlapping,

i.e., if

(t+ λiv + intC) ∩ (t+ λjv + intC) = ∅
holds for all 1 ≤ i �= j ≤ m (with λ1 = 0). Furthermore, the line l ⊂ Ed

passing

through the origin o of Ed
is called a separating direction for the linear packing

t+C, t+ λ2v +C, . . . , t+ λmv +C

if

Prl(t+C),Prl(t+ λ2v +C), . . . ,Prl(t+ λmv +C)

are pairwise non-overlapping intervals on l, where Prl : Ed → l denotes the orthog-

onal projection of Ed
onto l. It is easy to see that every linear packing

t+C, t+ λ2v +C, . . . , t+ λmv +C

possesses at least one separating direction in Ed
. Finally, let K be a convex body

in Ed
and let m ≥ 1 be a positive integer. Then let ρ > 0 be the largest positive

real with the following property: for every line l passing through the origin o in

Ed
there exists a linear packing of m translates of ρC lying in K and having l as a

separating direction. It is straightforward to show that

ρ = rC(K,m).

4.2. On an Extension of a Helly-type Result of Klee. Recall the fol-

lowing Helly-type result of Klee [9]. Let F := {Ai | i ∈ I} be a family of compact

convex sets in Ed, d ≥ 2 containing at least d+1 members. Suppose C is a compact

convex set in Ed
such that the following holds: For each subfamily of d+ 1 sets in

F , there exists a translate of C that is contained in all d+ 1 of them. Then there

exists a translate of C that is contained in all the members of F . In what follows

we give a proof of the following extension of Klee’s theorem to linear packings.

Theorem 4.1. Let F := {Ai | i ∈ I} be a family of convex bodies in Ed, d ≥ 2

containing at least d+1 members. Suppose C is a convex body in Ed and m ≥ 1 is
a positive integer moreover, l is a line passing through the origin o in Ed such that
the following holds: For each subfamily of d + 1 convex bodies in F , there exists
a linear packing of m translates of C with separating direction l that is contained
in all d + 1 of them. Then there exists a linear packing of m translates of C with
separating direction l that is contained in all the members of F .

Proof. Let C1, . . . ,Cm be a linear packing of m translates of C with sepa-

rating direction l in Ed
. In what follows we always assume that whenever we write

C1, . . . ,Cm, then the orthogonal projections Prl(C1), . . . ,Prl(Cm) of the translates

C1, . . . ,Cm of C onto the line l, listed in this order, form a consecutive sequence

of congruent non-overlapping intervals with respect to some fixed orientation of l.
Let Li denote the family of all linear packings of m translates of C with separating

7.1 Plank Theorems - Old and New 147

as the factor of the largest positive homothetic copy of C, a translate of which

is contained in K. We need to do one more step to introduce the so-called

successive C-inradii of K as follows.

Let r be the C-inradius of K. For any 0 < ρ ≤ r let the ρC-rounded body
of K be denoted by KρC and be defined as the union of all translates of ρC
that are covered by K. (See Fig. 7.1.)

!"
!

"

Fig. 7.1 The ρC-rounded body of K: KρC.

Now, take a fixed integer m ≥ 1. On the one hand, if ρ > 0 is sufficiently

small, then wC(KρC) > mρ. On the other hand, wC(KrC) = r ≤ mr. As
wC(KρC) is a decreasing continuous function of ρ > 0 and mρ is a strictly

increasing continuous function of ρ, there exists a uniquely determined ρ > 0

such that

wC(K
ρC

) = mρ.

This uniquely determined ρ is called the mth successive C-inradius of K and

is denoted by rC(K,m). (See Fig. 7.2.) Notice that rC(K, 1) = r.

!"

" !

Fig. 7.2 The 3rd successiveC-inradius ofK: rC(K, 3) = ρ with the characteristic property

wC(KρC) = 3ρ.

For the sake of completeness we give a somewhat different but still equiv-

alent description of rC(K,m). If C is a convex body in Ed, then



13-11-26 11 
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such that the following holds: For each subfamily of d+ 1 sets in

F , there exists a translate of C that is contained in all d+ 1 of them. Then there

exists a translate of C that is contained in all the members of F . In what follows

we give a proof of the following extension of Klee’s theorem to linear packings.

Theorem 4.1. Let F := {Ai | i ∈ I} be a family of convex bodies in Ed, d ≥ 2

containing at least d+1 members. Suppose C is a convex body in Ed and m ≥ 1 is
a positive integer moreover, l is a line passing through the origin o in Ed such that
the following holds: For each subfamily of d + 1 convex bodies in F , there exists
a linear packing of m translates of C with separating direction l that is contained
in all d + 1 of them. Then there exists a linear packing of m translates of C with
separating direction l that is contained in all the members of F .

Proof. Let C1, . . . ,Cm be a linear packing of m translates of C with sepa-

rating direction l in Ed
. In what follows we always assume that whenever we write

C1, . . . ,Cm, then the orthogonal projections Prl(C1), . . . ,Prl(Cm) of the translates

C1, . . . ,Cm of C onto the line l, listed in this order, form a consecutive sequence

of congruent non-overlapping intervals with respect to some fixed orientation of l.
Let Li denote the family of all linear packings of m translates of C with separating
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and therefore by induction we get that the inequality r(x0,m) ≥ rC(K,m) holds

for all boundary points x0 of Xr. Then this fact and the concavity of r(x,m)

imply in a straightforward way that the inequality r(x,m) ≥ rC(K,m) holds for

all x ∈ Xr unless Xr is a closed halfspace of Ed
. However, the latter case can

happen only when (each Vi, 1 ≤ i ≤ n contains the same halfspace and therefore)

n = 1. As Theorem 2.2 clearly holds for n = 1, our inductive proof of Theorem 2.2

is complete.
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direction l which lie in Ai. Moreover, without loss of generality we may assume

that the origin o of Ed
is in C. Now, for each Ai, i ∈ I let

(Ai)−C := {t ∈ Ed|Li has a member starting with t+C}.

Clearly, each (Ai)−C, i ∈ I is a compact set. Furthermore, we claim that (Ai)−C

is a convex set for all i ∈ I. Indeed, it is rather straightforward to show that if

t1 +C,C2, . . . ,Cm−1,Cm, and t
�
1 +C,C�

2, . . . ,C
�
m−1,C

�
m

are linear packings chosen from Li, then there exists a linear packing

λt1 + (1− λ)t�1 +C,C��
2 , . . . ,C

��
m−1,λCm + (1− λ)C�

m

of m translates of C with separating direction l contained in the convex hull

conv ((λt1 + (1− λ)t�1 +C) ∪ (λCm + (1− λ)C�
m))

such that it is also in Li for any given 0 ≤ λ ≤ 1. Thus, based on the assumptions

of Theorem 4.1, the family {(Ai)−C | i ∈ I} is a collection of compact convex sets

of Ed
with the property that

(Ai1)−C ∩ (Ai2)−C ∩ · · · ∩ (Aid+1)−C �= ∅

for all pairwise distinct i1, i2, . . . , id+1 ∈ I. Hence, Helly’s theorem (see for example

[6], p. 19) implies that ∩{(Ai)−C | i ∈ I} �= ∅, finishing the proof of Theorem

4.1. �

4.3. On Some Concave Functions of Successive Inradii. A rather straight-

forward extension of the method of Akopyan and Karasev ([1]) combined with The-

orem 4.1 gives the following statement. For the statement below as well as its proof

we extend the definition of the mth successive C-inradius of convex bodies K ⊂ Ed

via including all non-empty compact convex sets K ⊂ Ed
having intK = ∅ with

the definition rC(K,m) := 0 and via including the empty set ∅ with the definition

rC(∅,m) := −∞.

Theorem 4.2. Let K and C be convex bodies in Ed, d ≥ 2 and let m be a
positive integer. Moreover, let V1 ∪V2 ∪ · · · ∪Vn be an inductive partition of Ed

and let Ki(x) := K ∩ (x+Vi) for all x ∈ Ed and 1 ≤ i ≤ n. Then the function

r(x,m) :=

n�

i=1

rC (Ki(x),m)

is a concave function of x ∈ Ed.

Proof. First, we need the following statement.

Lemma 4.3. Let P := {x ∈ Ed | Li(x) ≤ 0 for all 1 ≤ i ≤ p} be an arbitrary d-
dimensional convex polytope of Ed defined by the linear inequalities {Li(x) ≤ 0, 1 ≤
i ≤ p}. If P(y) := {x ∈ Ed | Li(x) + yi ≤ 0 for all 1 ≤ i ≤ p} stands for the
parallel deformation of P generated by the vector y = (y1, . . . , yp) ∈ Ep, then

rC (P(y),m)

is a concave function of y for any fixed convex body C of Ed and for any fixed
positive integer m.

8 KÁROLY BEZDEK

Proof. Let l be an arbitrary line passing through the origin o in Ed. Moreover,
let rC (P(y),m | l) denote the largest real ρ > 0 with the property that there exists
a linear packing of m translates of ρC lying in P(y) and having l as a separating
direction. Furthermore, let

PI(y) := {x ∈ Ed | Li(x) + yi ≤ 0 for all i ∈ I}
whenever I ⊂ [p] := {1, 2, . . . , p} and let rC (PI(y),m | l) be defined similarly to
rC (P(y),m | l). The definition of successive inradii based on linear packings and
Theorem 4.1 imply in a straightforward way that

(4.1) rC (P(y),m) = inf
o∈l⊂Ed

rC (P(y),m | l)

(4.2) rC (P(y),m | l) = inf
I⊂[p], card(I)≤d+1

rC (PI(y),m | l)

Next, we take a closer look of the convex polyhedral set PI(y): Clearly, PI(y)
is either a (convex polyhedral) cylinder (of some convex polyhedral base set having
dimension strictly less than d), or a (convex polyhedral) cone, or a d-dimensional
simplex. In the first case, we use induction on the dimension of the base set. In the
second case, we always have that rC (PI(y),m | l) = +∞. In the third case, it is
easy to see (using the definition of successive inradii based on linear packings) that
rC (PI(y),m | l) is a linear function of y. Thus, as the infimum of concave functions
is concave, (4.1) and (4.2) imply in a straightforward way that rC (P(y),m) is a
concave function of y, finishing the proof of Lemma 4.3. �

Second, observe that Lemma 4.3 and standard approximation by polytopes
yield the following statement.

Corollary 4.4. Let K1, . . . ,KN , and C be convex bodies in Ed and let m be
a positive integer. Then

rC ((y1 +K1) ∩ · · · ∩ (yN +KN ),m)

is a concave function of (y1, . . . ,yN ) ∈ ENd.

Finally, using Corollary 4.4 we get that rC (Ki(x),m) is a concave function of
x ∈ Ed for all 1 ≤ i ≤ n and therefore also r(x,m) =

�n
i=1

rC (Ki(x),m) is a
concave function of x ∈ Ed, finishing the proof of Theorem 4.2. �

4.4. Estimating Sums of Successive Inradii. Now, we are set for an in-
ductive proof of Theorem 2.2 on the number n of tiles in the relevant inductive
partition. The details are as follows. By Theorem 4.2 the function r(x,m) =�n

i=1
rC (Ki(x),m) is a concave function of x and so, Xr := {x ∈ Ed | r(x,m) >

−∞} is a closed convex set in Ed. If x0 is a boundary point of Xr, then at least one
Ki(x0) = K∩ (x0 +Vi) must have an empty interior in Ed say, intKi0(x0) = ∅ for
some 1 ≤ i0 ≤ n. Then take the inductive partition W1 ∪ · · · ∪Wi0−1 ∪Wi0+1 ∪
· · · ∪ Wn of Ed such that Vj ⊂ Wj for all j �= i0. Now, it is easy to see that if
int (K ∩ (x0 +Vj)) �= ∅ for some j �= i0, then K ∩ (x0 + Vj) = K ∩ (x0 + Wj).
Thus,

n�

i=1

rC (K ∩ (x0 +Vi),m) =
�

j �=i0

rC (K ∩ (x0 +Wj),m)
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rC ((y1 +K1) ∩ · · · ∩ (yN +KN ),m)

is a concave function of (y1, . . . ,yN ) ∈ ENd.

Finally, using Corollary 4.4 we get that rC (Ki(x),m) is a concave function of
x ∈ Ed for all 1 ≤ i ≤ n and therefore also r(x,m) =

�n
i=1

rC (Ki(x),m) is a
concave function of x ∈ Ed, finishing the proof of Theorem 4.2. �

4.4. Estimating Sums of Successive Inradii. Now, we are set for an in-
ductive proof of Theorem 2.2 on the number n of tiles in the relevant inductive
partition. The details are as follows. By Theorem 4.2 the function r(x,m) =�n

i=1
rC (Ki(x),m) is a concave function of x and so, Xr := {x ∈ Ed | r(x,m) >

−∞} is a closed convex set in Ed. If x0 is a boundary point of Xr, then at least one
Ki(x0) = K∩ (x0 +Vi) must have an empty interior in Ed say, intKi0(x0) = ∅ for
some 1 ≤ i0 ≤ n. Then take the inductive partition W1 ∪ · · · ∪Wi0−1 ∪Wi0+1 ∪
· · · ∪ Wn of Ed such that Vj ⊂ Wj for all j �= i0. Now, it is easy to see that if
int (K ∩ (x0 +Vj)) �= ∅ for some j �= i0, then K ∩ (x0 + Vj) = K ∩ (x0 + Wj).
Thus,

n�

i=1

rC (K ∩ (x0 +Vi),m) =
�

j �=i0

rC (K ∩ (x0 +Wj),m)
PLANK THEOREMS VIA SUCCESSIVE INRADII 9

and therefore by induction we get that the inequality r(x0,m) ≥ rC(K,m) holds

for all boundary points x0 of Xr. Then this fact and the concavity of r(x,m)

imply in a straightforward way that the inequality r(x,m) ≥ rC(K,m) holds for

all x ∈ Xr unless Xr is a closed halfspace of Ed
. However, the latter case can

happen only when (each Vi, 1 ≤ i ≤ n contains the same halfspace and therefore)

n = 1. As Theorem 2.2 clearly holds for n = 1, our inductive proof of Theorem 2.2

is complete.
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Problem 7.1. Let K and C be convex bodies in Ed, d ≥ 2 and let m be a
positive integer. Prove or disprove that if V1 ∪ V2 ∪ . . . ∪ Vn is a convex parti-
tion (resp., covering) of Ed such that int(Vi ∩ K) �= ∅ for all 1 ≤ i ≤ n, then�n

i=1
rC(Vi ∩K,m) ≥ rC(K,m).

Next observe that (7.1) implies in a straightforward way that if K and C are
convex bodies in Ed and V1 ∪ V2 ∪ . . . ∪ Vn is an inductive covering of Ed such
that int(Vi ∩ K) �= ∅ for all 1 ≤ i ≤ n, then the greatest mth successive C-
inradius of the pieces Vi∩K, i = 1, 2, . . . , n is at least 1

nrC(K,m). As the sequence
mrC(K,m),m = 1, 2, . . . is an increasing one, therefore 1

nrC(K,m) ≤ rC(K,mn)
raising the following question (see also Conjecture 2.5).

Problem 7.2. Let K and C be convex bodies in Ed, d ≥ 2 and let m be a
positive integer. Prove or disprove that if V1 ∪V2 ∪ . . . ∪Vn is a convex partition
(resp., covering) of Ed such that int(Vi∩K) �= ∅ for all 1 ≤ i ≤ n, then the greatest
mth successive C-inradius of the pieces Vi∩K, i = 1, 2, . . . , n is at least rC(K,mn).
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Problem 7.2.4 Let 0 < c(d, k) ≤ 1 denote the largest real number with the

property that if K is an ellipsoid and C1, . . . ,CN are k-codimensional cylin-

ders in E
d, 1 ≤ k ≤ d − 1 such that K ⊂

�N
i=1 Ci, then

�N
i=1 crvK(Ci) ≥

c(d, k). Determine c(d, k) for given d and k.

On the one hand, Theorem 7.1.1 and Theorem 7.2.2 imply that c(d, d −
1) = 1 and c(d, 1) = 1 moreover, c(d, k) ≥ 1

(dk)
. On the other hand, a clever

construction due to Kadets [200] shows that if d − k ≥ 3 is a fixed integer,
then limd→∞ c(d, k) = 0. Thus, the following as a subquestion of Problem 7.2.4
seems to be open as well.

Problem 7.2.5 Prove or disprove the existence of a universal constant c > 0
(independent of d) with the property that if Bd

denotes the unit ball centered

at the origin o in E
d
and C1, . . . ,CN are (d− 2)-codimensional cylinders in

E
d
such that Bd ⊂

�N
i=1 Ci, then the sum of the 2-dimensional base areas of

C1, . . . ,CN is at least c.

7.3 Kadets-Type Theorems

Recall that Ball ([16]) generalized the plank theorem of Bang ([21], [22]) for
coverings of balls by planks in Banach spaces (where planks are defined with
the help of linear functionals instead of inner product). This theorem was
further strengthened by Kadets [201] for real Hilbert spaces as follows. Let C
be a closed convex subset with non-empty interior in the real Hilbert space H
(finite or infinite dimensional). We call C a convex body of H. Then let r(C)
denote the supremum of the radii of the balls contained in C. (One may call
r(C) the inradius of C.) Planks and their widths in H are defined with the
help of the inner product of H in the usual way. Thus, if C is a convex body
in H and P is a plank of H, then the width w(P) of P is always at least as
large as 2r(C ∩P). Now, the main result of [201] is the following.

Theorem 7.3.1 Let the ball B of the real Hilbert space H be covered by the

convex bodies C1,C2, . . . ,Cn in H. Then

n�

i=1

r(Ci ∩B) ≥ r(B).

We note that an independent proof of the 2-dimensional Euclidean case
of Theorem 7.3.1 can be found in [41]. Kadets ([201]) proposes to investigate
the analogue of Theorem 7.3.1 in Banach spaces. Thus, an affirmative answer
to the following problem would improve the plank theorem of Ball.

Problem 7.3.2 Let the ball B be covered by the convex bodies C1,C2, . . . ,Cn

in an arbitrary Banach space. Prove or disprove that

Vladimir Kadets 
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7.3 Kadets–Ohmann-Type Theorems

Recall that Ball ([17]) generalized the plank theorem of Bang ([22], [23]) for
coverings of balls by planks in Banach spaces (where planks are defined with
the help of linear functionals instead of inner product). This theorem was
further strengthened by Kadets [204] for real Hilbert spaces as follows. Let C
be a closed convex subset with non-empty interior in the real Hilbert space H
(finite or infinite dimensional). We call C a convex body of H. Then let r(C)
denote the supremum of the radii of the balls contained in C. (One may call
r(C) the inradius of C.) Planks and their widths in H are defined with the
help of the inner product of H in the usual way. Thus, if C is a convex body
in H and P is a plank of H, then the width w(P) of P is always at least as
large as 2r(C ∩P). Now, the main result of [204] is the following.

Theorem 7.3.1 Let the ball B of the real Hilbert space H be covered by the

convex bodies C1,C2, . . . ,Cn in H. Then

n�

i=1

r(Ci ∩B) ≥ r(B).

We note that the 2-dimensional Euclidean case of Theorem 7.3.1 had been
stated and proved by Ohmann [246] several years before the publication
of [204] (see also the recent paper [42] of A. Bezdek for reproving that 2-
dimensional case independently). Kadets ([204]) proposes to investigate the
analogue of Theorem 7.3.1 in Banach spaces. Thus, an affirmative answer to
the following problem would improve the plank theorem of Ball.

Problem 7.3.2 Let the ball B be covered by the convex bodies C1,C2, . . . ,Cn

in an arbitrary Banach space. Prove or disprove that

n�

i=1

r(Ci ∩B) ≥ r(B).

Next, we discuss an extension of Theorem 7.3.1 to coverings of large balls in
spherical spaces proved just recently by Schneider and the author in [83]. Re-
call that Sd stands for the d-dimensional unit sphere in the (d+1)-dimensional
Euclidean space Ed+1, d ≥ 2. A spherically convex body is a closed, spherically
convex subset K of Sd with interior points and lying in some closed hemi-
sphere, thus, the intersection of Sd with a (d+ 1)-dimensional closed convex
cone of Ed+1 different from E

d+1. The inradius r(K) of K is the spherical
radius of the largest spherical ball contained in K. Also, recall that a lune in
S
d is the d-dimensional intersection of Sd with two closed halfspaces of Ed+1

with the origin o in their boundaries. The intersection of the boundaries (or
any (d − 1)-dimensional subspace in that intersection, if the two subspaces
are identical) is called the ridge of the lune. Evidently, the inradius of a lune
is half the interior angle between the two defining hyperplanes.
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Beiträge zur Alg. und Geom. 27 (1988), 49–53.

39. A. Bezdek and K. Bezdek, A solution of Conway’s fried potato problem, Bull. London
Math. Soc. 27/5 (1995), 492–496.

40. A. Bezdek and K. Bezdek, Conway’s fried potato problem revisited, Arch. Math. 66/6
(1996), 522–528.

41. A. Bezdek, K. Bezdek, and R. Connelly, Finite and uniform stability of sphere pack-
ings, Discrete Comput. Geom. 20 (1998), 111–130.

42. A. Bezdek, On a generalization of Tarski’s plank problem, Discrete Comput. Geom.
38 (2007), 189–200.
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Theorem 7.3.3 If the spherically convex bodies K1, . . . ,Kn cover the spher-
ical ball B of radius r(B) ≥ π

2 in Sd, d ≥ 2, then

n�

i=1

r(Ki) ≥ r(B).

For r(B) = π
2 the stronger inequality

�n
i=1 r(Ki∩B) ≥ r(B) holds. Moreover,

equality for r(B) = π or r(B) = π
2 holds if and only if K1, . . . ,Kn are lunes

with common ridge which have pairwise no common interior points.

Theorem 7.3.3 is a consequence of the following result proved by Schneider
and the author in [83]. Recall that Svold(. . . ) denotes the spherical Lebesgue
measure on Sd, and recall that (d+ 1)ωd+1 = Svold(Sd).

Theorem 7.3.4 If K is a spherically convex body in Sd, d ≥ 2, then

Svold(K) ≤ (d+ 1)ωd+1

π
r(K).

Equality holds if and only if K is a lune.

Indeed, Theorem 7.3.4 implies Theorem 7.3.3 as follows. If B = Sd; that
is, the spherically convex bodies K1, . . . ,Kn cover Sd, then

(d+ 1)ωd+1 ≤
n�

i=1

Svold(Ki) ≤
(d+ 1)ωd+1

π

n�

i=1

r(Ki),

and the stated inequality follows. In general, when B is different from Sd,
let B� ⊂ Sd be the spherical ball of radius π − r(B) centered at the point
antipodal to the center of B. As the spherically convex bodies B�,K1, . . . ,Kn

cover Sd, the inequality just proved shows that

π − r(B) +
n�

i=1

r(Ki) ≥ π,

and the stated inequality follows. If r(B) = π
2 , then K1 ∩ B, . . . ,Kn ∩ B

are spherically convex bodies and as B�,K1 ∩B, . . . ,Kn ∩B cover Sd , the
stronger inequality follows. The assertion about the equality sign for the case
when r(B) = π or r(B) = π

2 follows easily.
We close this section with the following question that bridges Theo-

rem 7.3.3 to Theorem 7.3.1:

Problem 7.3.5 Let the spherically convex bodies K1, . . . ,Kn cover the spher-
ical ball B of radius r(B) < π

2 in Sd, d ≥ 2. Then prove or disprove that

n�

i=1

r(Ki) ≥ r(B).
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