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Abstract. We find many tight codes in compact spaces, i.e., optimal codes

whose optimality follows from linear programming bounds. In particular, we
show the existence (and abundance) of several hitherto unknown families
of simplices in quaternionic projective spaces and the octonionic projective

plane. The most noteworthy cases are 15-point simplices in HP2 and 27-point
simplices in OP2, both of which are the largest simplices and the smallest
2-designs possible in their respective spaces. These codes are all universally
optimal, by a theorem of Cohn and Kumar. We also show the existence
of several positive-dimensional families of simplices in the Grassmannians of

subspaces of Rn with n ≤ 8; close numerical approximations to these families
had been found by Conway, Hardin, and Sloane, but no proof of existence was
known. Our existence proofs are computer-assisted, and the main tool is a

variant of the Newton-Kantorovich theorem. This effective implicit function
theorem shows, in favorable conditions, that every approximate solution to
a set of polynomial equations has a nearby exact solution. Finally, we also

exhibit a few explicit codes, including a configuration of 39 points in OP2 which
form a maximal system of mutually unbiased bases. This is the last tight code
in OP2 whose existence had been previously conjectured but not resolved.
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1. Introduction

The study of codes in spaces such as spheres, projective spaces, and Grassmannians
has been the focus of much interest recently, involving an interplay of methods
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from many aspects of mathematics, physics, and computer science [BV08BV08, BN+09BN+09,
BRV13BRV13, BG09BG09, R05R05, MQ+13MQ+13, FKM12FKM12]. Given a compact metric space X, the
basic question is how to arrange N points in X so as to maximize the minimal
distance between them. A point configuration is called a code, and an optimal code
C maximizes the minimal distance between its points given its size |C|. Finding
optimal codes is a central problem in coding theory. Even when X is finite (for
example, the cube {0, 1}n under Hamming distance), this optimization problem is
generally intractable, and it is even more difficult when X is infinite.

Most of the known optimality theorems have been proved using linear program-
ming bounds, and we are especially interested in codes for which these bounds are
sharp. We call them tight codes.11 These cases include many of the most remarkable
codes known, such as the icosahedron or the E8 root system.

In this paper, we explore the landscape of tight codes in projective spaces. We
are especially interested in simplices of N points in d-dimensional projective space
(i.e., collections of N equidistant points). Tight simplices correspond to tight
equiangular frames [ST+07ST+07], which have applications in signal processing and sparse
approximation, and they also capture interesting invariants of their ambient spaces.

In real and complex projective spaces, tight simplices occur only sporadically.
All known constructions are based on geometric, group-theoretic, or combinatorial
properties that depend delicately on the size N and dimension d. By contrast, we
find a surprising new phenomenon in quaternionic and octonionic spaces: in each
dimension, there are substantial intervals of sizes for which tight simplices always
seem to exist.

This behavior cannot plausibly be explained using the sorts of constructions
that work in real and complex spaces. In fact, the new tight simplices exhibit
little structure and seem to exist not for any special reason, but rather because of
parameter counting: they can be characterized by systems of equations with more
variables than constraints. Making this heuristic precise, and indeed extracting any
proof from this approach, requires a delicate choice of constraints. Much of our
paper is devoted to identifying and analyzing such a choice. We do not know how
to prove that the simplices exist in all dimensions, but we prove existence in many
hitherto unknown cases. We also extend our methods to handle some exceptional
cases that are particularly subtle.

Our results settle several open problems dating back to the early 1980s. We show
the existence of a 15-point simplex in HP2 and a 27-point simplex in OP2. These
are not only optimal codes, but also the largest possible simplices in their ambient
spaces. (For comparison, the six diagonals of an icosahedron form a maximal simplex
in RP2, and the largest simplex in CP2 has size nine.) Furthermore, these simplices
are tight 2-designs, which makes them analogues of SIC-POVMs, a family of complex
projective codes studied in quantum information theory [RB+04RB+04]. We also construct
a set of 13 mutually unbiased bases in OP2. The mutually unbiased bases had been
conjectured to exist [H84aH84a, p. 35], but no construction was known, and the 15- and
27-point tight simplices were conjectured not to exist [H82H82, p. 251]. It would be
interesting to determine whether using the points of these simplices as vertices could

1The word “tight” is used for a related but more restrictive concept in the theory of designs.

We use the same word here for lack of a good substitute. This makes “tight” a noncompositional
adjective, much like “optimal”: codes and designs are both just sets of points, so every code is a
design and vice versa, but a tight code is not necessarily a tight design. (However, one can show

that every tight design is a tight code.)
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lead to triangulations of HP2 and OP2, which would necessarily be minimal (see
[BK92BK92]).

We also prove the existence of many tight simplices in real Grassmannians, which
were conjectured to exist in [CHS96CHS96] based on numerical evidence, and we show how
parameter counting explains this phenomenon. As in projective spaces, it is not
obvious how to compute a correct parameter count. Our task is to find the right
constraints, so that the problem becomes amenable to rigorous proof.

In contrast to the usual algebraic methods for constructing tight codes, we take
a rather different approach to show the existence of families of simplices. We use a
general effective implicit function theorem (i.e., one with explicit bounds), which
allows us to show the existence of a real solution to a system of polynomial equations
near an approximate solution. Furthermore, it proves that the space of solutions is
a smooth manifold near the approximate solution and tells us its dimension. Using
this approach, we prove the existence of tight simplices by computing numerical
approximations and then applying the existence theorem.22

The idea of making the implicit function theorem effective goes back to the
Newton-Kantorovich theorem [K48K48], but applying it in this geometric setting allows
us to establish many new results, for which algebraic constructions seem out of
reach. The closest predecessor to our applications that we are aware of is a sequence
of papers [CW06CW06, C09C09, AC+10AC+10, CFL11CFL11] on the existence of spherical t-designs on
S2 with at least (t + 1)2 points. These papers also use a Newton-Kantorovich
variant, applied in a case in which there are approximately twice as many variables
as constraints: the space of N -point configurations on S2 has dimension 2N − 3 for
N ≥ 3, and the t-design condition imposes (t+ 1)2 − 1 constraints (since that is the
dimension of the space spanned by the spherical harmonics of degree 1 through t).

In §22 we describe linear programming bounds and recall what is known about tight
codes in projective spaces over R, C, H, and O. An effective existence theorem, our
main tool in this paper, is the subject of §33. Our results concerning existence of new
families of projective simplices, proved using the existence theorem, are described
in §44 and §55. In §66 we use our methods to produce positive-dimensional families
of simplices in real Grassmannians. We then give a discussion of the algorithms
and computer programs used for these computer-assisted proofs in §77. Finally, we
conclude in §88 with three explicit constructions of universally optimal codes, the
most notable of which is a maximal system of mutually unbiased bases in OP2.

We thank Noam Elkies for many helpful conversations. We are especially grateful
to Mahdad Khatirinejad for his involvement in the early stages of this work. In
particular, he collaborated with us on the numerical investigations that initially
suggested the widespread existence of tight quaternionic simplices.

2. Codes in projective spaces and linear programming bounds

2.1. Projective spaces over R, C, H, and O. If K = R, C, or H, we denote by
KPd−1 := (Kd \ {0})/K× the set of lines in Kd. That is, we identify x and xα for
x ∈ Kd \ {0} and α ∈ K×. Note the convention that K× acts on the right; this is
important for the noncommutative algebra H.

2In real projective spaces, the problem is much easier: one can easily convert an approximation
to an exact construction by rounding the Gram matrix. However, that fails in other projective
spaces and Grassmannians. See the discussion before Proposition 2.42.4.
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We equip Kd with the Hermitian inner product 〈x1, x2〉 = x†1x2, where † denotes
the conjugate transpose. We may represent an element of the projective space
KPd−1 by a unit-length vector x ∈ Kd, and we often abuse notation by treating
the element itself as such a vector. Under this identification, the chordal distance
between two points of KPd−1 is

ρ(x1, x2) =
√

1− |〈x1, x2〉|2.
It is not difficult to check that this formula defines a metric equivalent to the
Fubini-Study metric. Specifically, if ϑ(x1, x2) is the geodesic distance on KPd−1
under the Fubini-Study metric, normalized so that the greatest distance between
two points is π, then

cosϑ(x1, x2) = 2|〈x1, x2〉|2 − 1

and

ρ(x1, x2) = sin

(
ϑ(x1, x2)

2

)
.

Alternatively, elements x ∈ KPd−1 correspond to projection matrices Π = xx†,
which are Hermitian matrices with Π2 = Π and Tr Π = 1. The space H(Kd) of
Hermitian matrices is a real vector space endowed with a positive-definite inner
product

〈A,B〉 = Tr
1

2
(AB +BA) = Re TrAB.

Because Re ab = Re ba for a, b ∈ K, it follows that Re Tr(ABC) = Re Tr(CAB) for
A,B,C ∈ Kd×d; in other words, the functional Re Tr is cyclic invariant. Hence, for
any x1, x2 ∈ KPd−1 with associated projection matrices Π1,Π2 ∈ H(Kd), we have

〈Π1,Π2〉 = Re Trx1x
†
1x2x

†
2

= Re Trx†2x1x
†
1x2

= Re 〈x2, x1〉〈x1, x2〉
= |〈x1, x2〉|2.

(2.1)

Thus the metric on KPd−1 can also be defined by ρ(x1, x2) =
√

1− 〈Π1,Π2〉.
Equivalently, it equals ||Π1 −Π2||F /

√
2, where || · ||F denotes the Frobenius norm:

||A||F =
(∑

i,j |Aij |2
)1/2

for a matrix whose i, j entry is Aij .
Modulo isometries, distance is the only invariant of a pair of points, but triples

have another invariant, known as the Bargmann invariant [B64B64] or shape invariant
[B90B90]. In terms of projection matrices, it equals Re Tr

(
Π1Π2Π3

)
, and the infor-

mation it conveys is essentially the symplectic area of the corresponding geodesic
triangle [MS93MS93, HM94HM94]. One can define similar invariants for more than three points,
but they can be computed in terms of three-point invariants as long as no two
points are orthogonal. When no two points are orthogonal, the two- and three-point
invariants characterize the entire configuration [BE98BE98, BE01BE01].

The one remaining projective space we have not yet constructed is the octonionic
projective plane OP2. (See [B02B02] for an account of why OPd cannot exist for d > 2;
one can construct OP1, but we will ignore it as it is simply S8.) Due to the failure
of associativity, the construction of OP2 is more complicated than that of the other
projective spaces; in particular, we cannot simply view it as the space of lines in
O3. However, there is a construction analogous to the one using Hermitian matrices
above. The result is an exceptionally beautiful space that has been called the panda
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of geometry [B03B03, p. 155]. The points of OP2 are 3× 3 projection matrices over O,
i.e., 3 × 3 Hermitian matrices Π satisfying Π2 = Π and Tr Π = 1. The (chordal)
metric in OP2 is given by

ρ(Π1,Π2) =
1√
2
||Π1 −Π2||F =

√
1− 〈Π1,Π2〉.

Each projection matrix Π is of the form

Π =

ab
c

(ā b̄ c̄
)
,

where a, b, c ∈ O satisfy |a|2 + |b|2 + |c|2 = 1 and (ab)c = a(bc). We can cover
OP2 by three affine charts as follows. Any point may be represented by a triple
(a, b, c) ∈ O3 with |a|2 + |b|2 + |c|2 = 1, and for the three charts we assume a, b, or c
are in R+, respectively. In practice, for computations with generic configurations we
can simply work in the first chart and refer to a projection matrix by its associated
point (a, b, c) ∈ R+ ×O2.

2.2. Tight simplices. Projective spaces can be embedded into Euclidean space by
mapping each point to the corresponding projection matrix; using this embedding,
the standard bounds on the size and distance of regular Euclidean simplices imply
bounds on projective simplices. The resulting bounds, which we review in this
subsection, were first proven by Lemmens and Seidel [LS73LS73]. They are also known
in information theory as Welch bounds [W74W74].

As above, let K be R, C, H, or O. We consider regular simplices in KPd−1, with
the understanding that d = 3 when K = O.

Definition 2.1. A regular simplex in a metric space (X, ρ) is a collection of distinct
points x1, . . . , xN of X with the distances ρ(xi, xj) all equal for i 6= j.

We often drop the adjective “regular” and refer to a regular simplex as a simplex.

Proposition 2.2. Consider a regular simplex in KPd−1 consisting of N > 1 points
x1, . . . , xN with associated projection matrices Π1, . . . ,ΠN , and let α = 〈Πi,Πj〉 be
the common inner product for i 6= j. Then

N ≤ d+
(d2 − d) dimRK

2
and, for any such value of N ,

α ≥ N − d
d(N − 1)

.

Proof. The Gram matrix G associated to Π1, . . . ,ΠN has unit diagonal and α in
each off-diagonal entry. Since G is nonsingular,33 the elements Π1, . . . ,ΠN ∈ H(Kd)
are linearly independent, implying N ≤ dimRH(Kd) = d + (d2 − d)(dimRK)/2.
Now note that 〈Πi, Id〉 = |xi|2 = 1 for each i = 1, . . . , N . Using this we compute〈(

N∑
i=1

Πi

)
− N

d
Id,

(
N∑
i=1

Πi

)
− N

d
Id

〉
= N − N2

d
+N(N − 1)α.

Nonnegativity of this expression gives the desired bound on α. �

3Specifically, G = (1−α)IN +αvvt, where v is the all-ones vector, and therefore the eigenvalues
of G are 1−α (with multiplicity N −1) and 1 + (N − 1)α. These are all nonzero because α ∈ [0, 1).
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Definition 2.3. We refer to a regular simplex with

α =
N − d
d(N − 1)

as a tight simplex. That is, it is a simplex with the maximum possible distance
allowed by Proposition 2.22.2.

We noted above the difference between tight codes and tight designs, and on the
surface Definition 2.32.3 seems to introduce a third notion of tightness. However, we
will see that a tight simplex is a tight code (Lemma 2.92.9), so this new definition is
really just a specialization.

Note that Definition 2.32.3 is independent of the coordinate algebra K. In other
words, the canonical embeddings RPd−1 ↪→ CPd−1 ↪→ HPd−1 and HP2 ↪→ OP2

preserve tight simplices.
It is not known for which N , d, and K a tight simplex exists (later in this section

we will survey the known examples). When K = R, this problem is fundamentally
combinatorial. Specifically, consider the Gram matrix of some corresponding unit

vectors in Rd. All the off-diagonal entries must be ±
√

N−d
d(N−1) , and the simplex is

determined by the sign pattern. Thus, up to isometry, there can be only finitely
many tight simplices of a given size in RPd−1. Furthermore, any sufficiently close
numerical approximation will determine the signs and let one reconstruct the exact
simplex.

By contrast, tight simplices are much more subtle when K 6= R. The Gram
matrix entries have phases, not just signs, and tight simplices can even occur in
positive-dimensional families. In terms of the Bargmann invariants, the three-
point invariants are not determined by the pairwise distances. No simple way to
reconstruct an exact simplex from an approximation is known, and we see no reason
to believe one exists.

Proposition 2.4. Every tight simplex is an optimal code.

More generally, the bound on α in Proposition 2.22.2 applies to the minimal distance
of any code, not just a simplex.

Proof. Let Π1, . . . ,ΠN be the projection matrices corresponding to any N -point
code in KPd−1. As in the proof of Proposition 2.22.2,

N − N2

d
+

N∑
i,j=1
i 6=j

〈Πi,Πj〉 =

〈(
N∑
i=1

Πi

)
− N

d
Id,

(
N∑
i=1

Πi

)
− N

d
Id

〉
≥ 0.

Thus, the average of 〈Πi,Πj〉 over all i 6= j satisfies

1

N(N − 1)

N∑
i,j=1
i 6=j

〈Πi,Πj〉 ≥
N2/d−N
N(N − 1)

=
N − d
d(N − 1)

.

In particular, the greatest value of 〈Πi,Πj〉 for i 6= j must be at least this large. �

A regular simplex of N ≤ d points in KPd−1 is optimal if and only if the points
are orthogonal (i.e., α = 0). Such simplices always exist. We only consider them
to be tight when N = d, as the N < d cases do not satisfy Definition 2.32.3; these
degenerate cases are tight simplices in a lower-dimensional projective space. There
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also always exists a tight simplex with N = d+ 1 points, obtained by projecting the
regular simplex on the sphere Sd−1 into RPd−1. Therefore in what follows we will
generally assume N ≥ d+ 2.

It follows immediately from the proof of Proposition 2.22.2 that a regular simplex
{x1, . . . , xN} is tight if and only if

N∑
i=1

xix
†
i =

N

d
Id.

This condition can be reformulated in the language of projective designs [DGS77DGS77,
N81N81] (see also [H82H82] for a detailed account of the relevant computations in projective
space). Specifically, it says that the configuration is a 1-design. We will make no
serious use of the theory of designs in this paper, and for our purposes we could

simply regard
∑N
i=1 xix

†
i = (N/d)Id as the definition of a 1-design. However, to put

our discussion in context, we will briefly recall the general concept of designs in the
next subsection.

2.3. Linear programming bounds. Linear programming bounds [KL78KL78, DGS77DGS77]
use harmonic analysis on a space X to prove bounds on codes in X. These bounds
and their extensions [BV08BV08] are among the only known ways to prove systematic
bounds on codes, and they are sharp in a number of important cases. Later in this
section we summarize the sharp cases that are known in projective spaces (see also
Table 1 in [CK07CK07] for a corresponding list for spheres), but first we give a brief
review of how linear programming bounds work.

The simplest setting for linear programming bounds is a compact two-point
homogeneous space. We will focus on the connected examples, namely spheres and
projective spaces, but discrete two-point homogeneous spaces such as the Hamming
cube are also important in coding theory.

Let X be a sphere or projective space, and let G be its isometry group under the
geodesic metric ϑ (normalized so that the greatest distance is π). Then L2(X) is a
unitary representation of G, and we can decompose it as a completed direct sum

L2(X) =
⊕̂
k≥0

Vk

of irreducible representations Vk. There is a corresponding sequence of zonal spherical
functions C0, C1, . . . , one attached to each representation Vk. The zonal spherical
functions are most easily obtained as reproducing kernels; for a brief review of the
theory, see Sections 2.2 and 8 of [CK07CK07]. We can represent them as orthogonal
polynomials with respect to a measure on [−1, 1], which depends on the space X,
and we index the polynomials so that Ck has degree k.

For our purposes, the most important property of zonal spherical functions is
that they are positive-definite kernels: for all N ∈ N and x1, . . . , xN ∈ X, the
N ×N matrix

(
Ci(cosϑ(xi, xj))

)
1≤i,j≤N is positive semidefinite. In fact, the zonal

spherical functions span the cone of all such functions.
For projective spaces KPd−1, the polynomials Ck may be taken to be the Jacobi

polynomials P
(α,β)
k , where α = (d−1)(dimRK)/2−1 (i.e, α = (dimRKPd−1)/2−1)

and β = (dimRK)/2− 1. We will normalize C0 to be 1.
Linear programming bounds for codes amount to the following proposition:
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Proposition 2.5. Let θ ∈ [0, π], and suppose the polynomial

f(z) =

n∑
k=0

fkCk(z)

satisfies f0 > 0, fk ≥ 0 for 1 ≤ k ≤ n, and f(z) ≤ 0 for −1 ≤ z ≤ cos θ. Then
every code in X with minimal geodesic distance at least θ has size at most f(1)/f0.

Proof. Let C be such a code. Then∑
x,y∈C

f(cosϑ(x, y)) ≥ f0|C|2,

because each zonal spherical function Ck is positive definite and hence satisfies∑
x,y∈C

Ck(cosϑ(x, y)) ≥ 0.

On the other hand, f(cosϑ(x, y)) ≤ 0 whenever ϑ(x, y) ≥ θ, and hence∑
x,y∈C

f(cosϑ(x, y)) ≤ |C|f(1)

because only the diagonal terms contribute positively. It follows that f0|C|2 ≤ f(1)|C|,
as desired. �

We say this bound is sharp if there is a code C with minimal distance at least θ and
|C| = f(1)/f0. Note that we require exact equality, rather than just |C| = bf(1)/f0c.

Definition 2.6. A tight code is one for which linear programming bounds are sharp.

Examining the proof of Proposition 2.52.5 yields the following characterization of
tight codes:

Lemma 2.7. A code C with minimal geodesic distance θ is tight iff there is a
polynomial f(z) =

∑n
k=0 fkCk(z) satisfying f0 > 0, fk ≥ 0 for 1 ≤ k ≤ n, f(z) ≤ 0

for −1 ≤ z ≤ cos θ, ∑
x,y∈C

Ck(cosϑ(x, y)) = 0

whenever fk > 0 and k 6= 0, and f(cosϑ(x, y)) = 0 for x, y ∈ C with x 6= y. In fact,
these conditions must hold for every polynomial f satisfying both f(1)/f0 = |C| and
the hypotheses of Proposition 2.52.5.

By Proposition 2.52.5, every tight code is as large as possible given its minimal
distance, but it is less obvious that such a code maximizes minimal distance given
its size.

Proposition 2.8. Every tight code is optimal.

Proof. Suppose f satisfies the hypotheses of Proposition 2.52.5, and C is a code of
size f(1)/f0 with minimal geodesic distance at least θ. We wish to show that its
minimal distance is exactly θ.

By Lemma 2.72.7, ∑
x,y∈C

(
f(cosϑ(x, y))− f0

)
= 0

and f(cosϑ(x, y)) = 0 for x, y ∈ C with x 6= y
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Now suppose C had minimal geodesic distance strictly greater than θ, and consider
a small perturbation C′ of C. It must satisfy∑

x,y∈C′

(
f(cosϑ(x, y))− f0

)
≥ 0,

by positive definiteness. On the other hand,∑
x,y∈C′

(
f(cosϑ(x, y))− f0

)
= |C′|f(1)− |C′|2f0 +

∑
x,y∈C′
x 6=y

f(cosϑ(x, y)).

We have |C′|f(1)− |C′|2f0 = 0 since |C′| = |C| = f(1)/f0. Thus,∑
x,y∈C′
x 6=y

f(cosϑ(x, y)) ≥ 0.

If the perturbation is small enough, then the minimal distance of C′ remains greater
than θ and hence f(cosϑ(x, y)) ≤ 0 for distinct x, y ∈ C′. In that case, we must have
f(cosϑ(x, y)) = 0 for distinct x, y ∈ C′. However, this fails for some perturbations,
for example if we move two points slightly closer together. It follows that every
code of size f(1)/f0 and minimal geodesic distance at least θ has minimal distance
exactly θ, so these codes are all optimal. �

Lemma 2.9. Tight simplices in projective space are tight codes.

Proof. Up to scaling, the first-degree zonal spherical function C1 on KPd−1 is
z + (d− 2)/d. Now let

f(z) = 1 +
(N − 1)d

2(d− 1)

(
z +

d− 2

d

)
.

It satisfies f(z) ≤ 0 for z ∈ [−1, 2α− 1], where

α =
N − d
d(N − 1)

,

and f(1)/f0 = N , as desired. �

Note that in this proof C1 depends only on d, and not on K. By contrast,
higher-degree zonal spherical functions for KPd−1 depend on both d and K.

We do not know whether every tight N -point code in KPd−1 with

d ≤ N ≤ d+ (d2 − d)(dimRK)/2

is a tight simplex, although we know of no counterexample. This assertion would
follow if the linear function f(z) from the proof of Lemma 2.92.9 always gave the
optimal linear programming bound in this range, but it does not. For example,
let d = 3, K = R, and N = 5, in which case α = −2/3. If there were a tight
simplex with these parameters, then the positive definiteness of Ck would imply
that Ck(1) + 4Ck(−2/3) ≥ 0 for all k. However, C4(1) + 4C4(−2/3) < 0, and so
no tight simplex exists. One can check that this inequality lets us improve on the
linear function f(z) by replacing it with f(z) + ε

(
C4(z)− C4(−2/3)

)
, which proves

an upper bound of slightly less than 5 for the code size when ε is small and positive.
A t-design in X is a code C ⊂ X such that for every f ∈ Vk with 0 < k ≤ t,∑

x∈C
f(x) = 0.
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In other words, every element of V0 ⊕ · · · ⊕ Vt has the same average over C as over
the entire space X. (Note that all functions in Vk for k > 0 have average zero, since
they are orthogonal to the constant functions in V0.) Using the reproducing kernel
property, this can be shown to be equivalent to∑

x,y∈C
Ck(cosϑ(x, y)) = 0

for 0 < k ≤ t.
In KPd−1, one can check that

N∑
i=1

xix
†
i =

N

d
Id

holds if and only if {x1, . . . , xN} is a 1-design.
A code is diametrical in X if it contains two points at maximal distance in X,

and it is m-distance set if exactly m distances occur between distinct points.

Definition 2.10. A tight design is an m-distance set that is a (2m − ε)-design,
where ε is 1 if the set is diametrical and 0 otherwise.

For example, an N -point tight simplex in KPd−1 with N = d+(d2−d)(dimRK)/2
(the largest possible value of N) is a tight 2-design. See [BH89BH89] for further examples.

Every tight t-design is the smallest possible t-design in its ambient space. This
was first proved for spheres in [DGS77DGS77]; see Propositions 1.1 and 1.2 in [BH85BH85] for
the general case. The converse is false: the smallest t-design is generally not tight.

A theorem of Levenshtein [L92L92] says that every m-distance set that is a (2m−1−ε)-
design is a tight code, where as above ε is 1 if the set is diametrical and 0 otherwise.
For example, all tight designs are tight codes. In [CK07CK07], it was also shown that
under these conditions, C is universally optimal for potential energy: it minimizes
energy for every completely monotonic function of squared chordal distance. (See
also [C10C10] for context.) This applies in particular to simplices, so all tight simplices
are universally optimal.

In fact every known tight code is universally optimal. Moreover, except for the
regular 600-cell in S3 and its image in RP3, they all satisfy the design condition just
mentioned. For lack of a counterexample, we conjecture that tight codes are always
universally optimal. (But see [CZ12CZ12] for perspective on why the simplest reason
why this might hold fails.)

2.4. Tight codes in RPd−1. We now describe what is known about tight codes
in real projective spaces. Table 2.12.1 provides a summary of the current state of
knowledge. Note that in several lines in the table, existence of a code is conditional
on existence of a combinatorial object such as a conference matrix; we provide
further details in the text below. See also Table 1 in [W09W09], which provides a list of
all known tight simplices in RPd−1 with d ≤ 50 and all possible cases that have not
been resolved.

Euclidean simplices and orthogonal points give the simplest infinite families of
tight codes.

Another infinite family of tight simplices comes from conference matrices [vLS66vLS66]
(see [CHS96CHS96, p. 156]): if a symmetric conference matrix of order 2d exists, then
there is a tight simplex of size 2d in Rd. In particular, we get a tight simplex in Rd
whenever 2d− 1 is a prime power congruent to 1 modulo 4. One can also construct
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Table 2.1. Known universal optima of N points in real projective
spaces RPd−1. The tight simplices are indicated by an asterisk
in the third column and have maximal squared inner product
(N − d)/(d(N − 1)); for brevity we omit the Gale duals of the tight
simplices. A star in the last column means the code may exist only
for certain parameter settings.

d N max |〈x, y〉|2 Name/origin

d N ≤ d 0 orthogonal points (tight when N = d)
d d+ 1 ∗ Euclidean simplex
d 2d ∗ symm. conf. matrix of order 2d (?)
d d(d+ 2)/2 1/d d/2 + 1 mutually unbiased bases (?)
2 N cos2(π/N) regular polygon

4 60 (
√

5− 1)/4 regular 600-cell
6 16 ∗ Clebsch
6 36 1/4 E6 root system
7 28 ∗ equiangular lines
7 63 1/4 E7 root system
8 120 1/4 E8 root system
23 276 ∗ equiangular lines
23 2300 1/9 kissing configuration of next line
24 98280 1/4 Leech lattice minimal vectors

v(v−1)
k(k−1) v

(
1 + v−1

k−1
)

∗ Steiner construction (?)

strongly regular graph with parameters
d N ∗ (N − 1, k, (3k −N)/2, k/2), where

k = N
2 − 1 +

(
1− N

2d

)√d(N−1)
N−d (?)

such codes through the Weil representation of the group G = PSL2(Fq). Note
that the icosahedron arises as the special case q = 5, which is why it is not listed
separately in Table 2.12.1.

Levenshtein [L82L82] described a family of tight codes in RPd−1 for d a power of
4, based on a construction using Kerdock codes; the regular 24-cell is the special
case with d = 4. These codes meet the orthoplex bound (Corollary 5.3 in [CHS96CHS96])
and give rise to d/2 + 1 mutually unbiased bases in their dimensions. Recall
that two orthonormal bases v1, . . . , vd and w1, . . . , wd are mutually unbiased if
|〈vi, wj〉|2 = 1/d for all i and j.

A trivial systematic family of tight codes is formed by the diameters of the regular
polygons in the plane. The next nine lines in Table 2.12.1 correspond to exceptional
geometric structures.

The Steiner construction from [FMT12FMT12] builds a tight simplex from a (2, k, v)
Steiner system and a Hadamard matrix of order 1 + (v − 1)/(k − 1). See [FMT12FMT12]
for a discussion of the parameters that can be achieved using different sorts of
Steiner systems. (Note that Bondarenko’s tight simplex [B10B10] is a Steiner simplex
with (k, v) = (3, 15).) Steiner simplices can be constructed as follows. Recall that
a (2, k, v) Steiner system is a set of v points with a collection of subsets of size k
called blocks, such that every two distinct points belonging to a unique block. Then
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Table 2.2. Known universal optima of N points in complex pro-
jective spaces CPd−1. The tight simplices are indicated by an
asterisk in the third column and have maximal squared inner prod-
uct (N − d)/(d(N − 1)); for brevity we omit the Gale duals of
the tight simplices as well as the tight simplices from RPd−1. A
star in the last column means the code may exist only for certain
parameter settings.

d N max |〈x, y〉|2 Name/origin

d 2d ∗ skew-symm. conf. matrix of order 2d (?)
d d2 ∗ SIC-POVMs (?)
d d(d+ 1) 1/d d+ 1 mutually unbiased bases (?)

2k − 1 4k − 1 ∗ skew-Hadamard matrix of order 4k (?)
2k 4k − 1 ∗ skew-Hadamard matrix of order 4k (?)
4 40 1/3 Eisenstein structure on E8

5 45 1/4 kissing configuration of next line
6 126 1/4 Eisenstein structure on K12

28 4060 1/16 Rudvalis group
v(v−1)
k(k−1) v

(
1 + v−1

k−1
)

∗ Steiner construction (?)

|S| |G| ∗ difference set S in abelian group G (?)

there must be d blocks, and every point is in r blocks, where

d =
v(v − 1)

k(k − 1)
and r =

v − 1

k − 1
.

Consider the d× v incidence matrix A for blocks and points, with entries 0 and 1,
and let H be a Hadamard matrix of order r+ 1. For each j from 1 to v, consider the
jth column of A, and form a d× (r + 1) matrix Mj whose ith row is a different row
of H for each i satisfying Ai,j 6= 0 and vanishes otherwise. Then it is not difficult to
check that the v(1 + r) columns of all these matrices Mj form a tight simplex in
RPd−1.

The last entry in the table is a reformulation of tight simplices in RPd−1 in terms
of strongly regular graphs (see Theorem 5.2 in [W09W09]). This sort of combinatorial
description works only over the real numbers. When d ≤ 50, only three cases are
known that are not encompassed by other lines in the table: (d,N) = (22, 176),
(36, 64), and (43, 344). See Table 1 in [W09W09] for more information.

We also observe the phenomenon of Gale duality: tight simplices of size N in
KPd−1 correspond to tight simplices of size N in KPN−d−1. For instance, the Gale
dual of the Clebsch configuration gives a tight simplex of 16 points in RP9. See §2.72.7
for more details.

2.5. Tight codes in CPd−1. Table 2.22.2 lists the tight codes we are aware of in
complex projective spaces. For a detailed survey of tight simplices, we refer the
reader to Chapter 4 of [K08K08].

Here, we observe a few more infinite families. In particular, if a conference matrix
of order 2d exists, then there is a tight code of 2d lines in CPd−1 [Z11Z11, p. 66]. For
prime powers q ≡ 3 (mod 4), this gives a construction of a tight (q+1)-point code in
CP(q−1)/2. As mentioned before, such codes may also be constructed using the Weil
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Table 2.3. Previously known universal optima of N points in
quaternionic and octonionic projective spaces. For brevity we omit
the tight simplices from RPd−1 and CPd−1. A star in the last
column means the code may exist only for certain parameter set-
tings.

Space N max |〈x, y〉|2 Name/origin

HPd−1 d(2d+ 1) 1/d 2d+ 1 mutually unbiased bases (?)
HP4 165 1/4 quaternionic reflection group
OP2 819 1/2 generalized hexagon of order (2, 8)

representation of PSL2(Fq). Another family of codes of d(d+ 1) points in CPd−1, for
d an odd prime power, was constructed by Levenshtein [L82L82] using dual BCH codes.
These codes meet the orthoplex bound and give rise to d + 1 mutually unbiased
bases in their dimensions. They were rediscovered by Wootters and Fields [WF89WF89],
with an extension to characteristic 2 and applications to physics. A third infinite
family is obtained from skew-Hadamard matrices (see [R07R07] for a construction using
explicit families of skew-Hadamard matrices and Theorem 4.14 in [K08K08] for the
general case).

The most mysterious tight simplices are the awkwardly named SIC-POVMs
(symmetric, informationally complete, positive operator-valued measures). SIC-
POVMs are simplices of size d2 in CPd−1, i.e., simplices of the greatest size allowed by
Proposition 2.22.2. These configurations play an important role in quantum information
theory, which leads to their name. Numerical experiments suggest they exist in all
dimensions, and that they can even be taken to be orbits of the Weyl-Heisenberg
group [Z11Z11, RB+04RB+04]. Exact SIC-POVMs are known for d ≤ 15, as well as d = 19,
24, 35, and 48, and numerical approximations are known for all d ≤ 67 (see [SG10SG10]).

The Steiner construction can be carried out in CPd−1 using a complex Hadamard
matrix instead of a real Hadamard matrix (see [FMT12FMT12]). Complex Hadamard
matrices of every order exist, so the construction applies whenever there is a (2, k, v)
Steiner system.

The last line of the table refers to a construction based on difference sets [XZG05XZG05]
(see also [K99K99]). Let G be an abelian group of order N , S a subset of G of order
d, and λ a natural number such that every nonzero element of G is a difference of
exactly λ pairs of elements of S. It follows that d(d− 1) = λ(N − 1), and that the
vectors

vχ = (χ(s))s∈S

give rise to a tight simplex of N points in Pd−1 as χ ranges over all characters
of G. As particular cases of this construction, one can obtain a tight simplex
of n2 + n + 1 points in CPn, when there is a projective plane of order n. A
generalization of this example was given in [XZG05XZG05], using Singer difference sets, to
produce (qd+1 − 1)/(q − 1) points in CPd−1, with d = (qd − 1)/(q − 1). Similarly,
if q is a prime power congruent to 3 modulo 4, then the quadratic residues give a
difference set, yielding a tight simplex of q points in CP(q−3)/2. As another example,
there is a difference set of 6 points in Z/31Z (namely, {0, 1, 4, 6, 13, 21}), which gives
rise to a tight simplex of 31 points in CP5.
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2.6. Tight codes in HPd−1 and OP2. Relatively little is known about tight codes
in quaternionic or octonionic projective spaces, aside from the real and complex
tight simplices they automatically contain. When d is a power of 4, there is a
construction of 2d+ 1 mutually unbiased bases in HPd−1 due to Kantor [K95K95], and
two exceptional codes are known.

The 165 points in HP4 from Table 2.32.3 are constructed using a quaternionic
reflection group (Example 9 in [H82H82]). The 819-point universal optimum is a
remarkable code in the octonionic projective plane [C83C83]; see also [EG96EG96] for another
construction. It can be thought of informally as the 196560 Leech lattice minimal
vectors modulo the action of the 240 roots of E8 (viewed as units in the integral
octonions), although this does not yield an actual construction: there is no such
action because the multiplication is not associative.

2.7. Gale duality. Gale duality is a fundamental symmetry of tight simplices.
It goes by several names in the literature, such as coherent duality, Naimark
complements, and the theory of eutactic stars. We call it Gale duality because it
is a metric version of Gale duality from the theory of polytopes (see Chapter 5 of
[T06T06] for the non-metric Gale transform).

Let K be R, C, or H. (Gale duality does not apply to OP2.)

Proposition 2.11 (Hadwiger [H40H40]). Let v1, . . . , vN span a d-dimensional vector
space V over K, and suppose they have the same norm |vi|2 = d/N . Then their
images in KPd−1 form a 1-design if and only if there is an N-dimensional vector
space U containing V and an orthonormal basis u1, . . . , uN of U such that vi is the
orthogonal projection of ui to V .

Proof. Let M be the d×N matrix whose ith column is vi. The existence of U and
u1, . . . , uN is equivalent to that of an extension of M to a unitary matrix by adding
N − d rows, in which case u1, . . . , uN are the columns of the extended matrix. This
extension is possible if and only if the rows of M are orthonormal vectors; in other
words, it is equivalent to MM† = Id.

To analyze M , we can write it as M =
∑N
i=1 vie

†
i , where e1, . . . , eN is the standard

orthonormal basis of KN . Then

MM† =

N∑
i,j=1

vie
†
iejv

†
j =

N∑
i=1

viv
†
i .

Thus, the extension is possible if and only if

N∑
i=1

viv
†
i = Id.

This equation is the condition for a projective 1-design once we rescale to account
for the normalization |vi|2 = d/N . �

Under the 1-design condition from Proposition 2.112.11, consider the projections
wi of the vectors ui to the orthogonal complement V ⊥ of V in U . This code
{w1, . . . , wN} in KPN−d−1 is called the Gale dual of the code {v1, . . . , vN} in
KPd−1. The construction from the proof shows that the Gale dual is well defined up
to unitary transformations of V ⊥. However, there is one technicality: the N points
in KPN−d−1 need not be distinct in general, so the Gale dual must be considered



OPTIMAL SIMPLICES AND CODES IN PROJECTIVE SPACES 15

a multiset of points. Aside from the need to allow multisets, Gale duality is an
involution on projective 1-designs, defined up to isometry.

Gale duality preserves tight simplices when N > d+ 1, and the multiplicity issue
does not arise:

Corollary 2.12. Let K be R, C, or H. For N > d+ 1, the Gale dual of an N -point
tight simplex in KPd−1 is an N -point tight simplex in KPN−d−1.

Proof. Because the 1-design property is preserved, we need only check that the Gale
dual is a simplex. In the notation used above, for i 6= j we have

0 = 〈ui, uj〉 = 〈vi, vj〉+ 〈wi, wj〉.

Thus, 〈wi, wj〉 is constant for i 6= j because 〈vi, vj〉 is. The inequality N > d + 1
merely rules out the degenerate case KP0. �

The inequality

N ≤ d+
(d2 − d) dimRK

2
from Proposition 2.22.2 shows that tight simplices cannot be too large. Combining
Gale duality with the same inequality shows that they cannot be too small either
(see Theorem 2.30 in [Z11Z11] and Corollary 2.19 in [K08K08]):

Corollary 2.13. Let K be R, C, or H. If there exists an N -point tight simplex in
KPd−1 with N > d+ 1, then

N ≥ d+
1 +

√
1 + 8d/(dimRK)

2
.

3. Effective existence theorems

Our main tool is an effective implicit function theorem, which gives conditions
under which an approximate solution to a system of equations necessarily leads to a
nearby exact solution. Theorems of this sort date back to the Newton-Kantorovich
theorem [K48K48] on the convergence of Newton’s method (see also [O68O68] for a short
proof). Our formulation is closer to Krawczyk’s version of Newton-Kantorovich
[K69K69], but it differs in that we focus on existence of solutions rather than convergence
of numerical algorithms.

The following theorem is a variant of Theorem 2 in [N07N07], and we adapt the
proof given there. In the statement, || · || denotes the operator norm, Df(x) is the
Jacobian of f at x, B(x0, ε) is the open ball around x0 with radius ε, and idW is
the identity operator on W .

Theorem 3.1. Let V and W be finite-dimensional normed vector spaces over R,
and suppose that f : B(x0, ε) → W is a C1 function, where x0 ∈ V and ε > 0.
Suppose also that T : W → V is a linear operator such that

(3.1) ||Df(x) ◦ T − idW || < 1− ||T || · |f(x0)|
ε

for all x ∈ B(x0, ε). Then there exists x∗ ∈ B(x0, ε) such that f(x∗) = 0. Moreover,
in B(x0, ε), the zero locus f−1(0) is a C1 submanifold of dimension dimV −dimW .

Of course, the submanifold is smooth if f is C∞.
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Proof. Consider the initial value problem

(3.2) x′(t) = −T
(
Df(x(t)) ◦ T

)−1
f(x0), x(0) = x0,

which is a rescaling of the differential equation for the continuous analogue of
Newton’s method (see Section 3 of [N07N07]). The motivation is that

d

dt
[f(x(t))] = Df(x(t))(x′(t))

= −
(
Df(x(t)) ◦ T

)(
Df(x(t)) ◦ T

)−1
f(x0)

= −f(x0),

and so f(x(t)) = (1− t)f(x0). Thus, x(1) should be a root of f , but of course we
must verify that the initial value problem has a solution defined on [0, 1].

First note that the bound (3.13.1) implies that Df(x) ◦ T is invertible for all
x ∈ B(x0, ε). Moreover, supposing for the moment that f(x0) 6= 0, we have

(3.3) ||(Df(x) ◦ T )−1|| < ε

||T || · |f(x0)|
.

These claims follow from the series expansion

(Df(x) ◦ T )−1 =

∞∑
i=0

(
idW −Df(x) ◦ T

)i
.

Because f is C1, (Df(x)◦T )−1 is continuous. Thus, by the Peano existence theorem
(see Chapter 1, Sections 1–5 in [CL55CL55]), the initial value problem (3.23.2) has a C1

solution x(t) defined on a nontrivial interval starting at 0. The solution can be
extended as long as x(t) does not approach the boundary of B(x0, ε). Using (3.33.3),
we have

|x′(t)| ≤ ||T || · ||(Df(x(t)) ◦ T )−1|| · |f(x0)| < ε.

It follows that the solution x(t) can be continued to t = 1 and satisfies |x(t)−x0| < εt;
setting x∗ = x(1) finishes the first part of the theorem.

Of course, if f(x0) = 0, then we can just take x∗ = x0.
It remains only to show that f−1(0) is a manifold of dimension dimV − dimW .

We noted above that the operator Df(x) ◦ T is invertible for all x ∈ B(x0, ε), so in
particular this is true for all x ∈ f−1(0). But that implies that Df(x) is surjective,
so we are done by an application of the standard implicit function theorem (see
Section 4.3 in [KP13KP13]). �

Given a function f and an approximate root x0, it is straightforward to apply
this theorem. We must compute an approximate right inverse T of Df(x0) and
bound ||Df(x) ◦ T − idW || for all x ∈ B(x0, ε). The simplest and most elegant
way to do this is using interval arithmetic (see §77 for details), but we can also use
Corollary 3.43.4 below when f is a polynomial.

In order for Theorem 3.13.1 to prove the existence of a solution of f(x) = 0,
Df(x) must have a right inverse at that solution. (In particular, we must have
dimV ≥ dimW .) If we view f as defining a system of simultaneous equations, then
choosing the right equations to use can be tricky. For example, some of the most
straightforward systems defining a tight simplex will not work to prove existence
of such a simplex, because Df is singular at every solution. Much of this paper is
devoted to formulating suitable systems defining different sorts of tight simplices.
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The generic cases are reasonably straightforward, but even they must be handled
carefully, and a few extreme cases are particularly subtle (Propositions 4.114.11 and 5.85.8).

In our applications, f will always be a polynomial map. In this case, the following
lemma can be useful in conjunction with Theorem 3.13.1.

Definition 3.2. For a polynomial p : Rm → R given by p(x) =
∑
I cIx

I , define
|p| =

∑
I |cI |. Given a polynomial map p = (p1, . . . , pn) : Rm → Rn, define |p| =

max |pi|.

Lemma 3.3. Let m ≥ n, ε > 0, and x0 ∈ Rm. Suppose f : Rm → Rn is a
polynomial function of total degree d, and let Rm and Rn carry the `∞ norm. Set
η = max(1, |x0|+ ε). Then for all x ∈ B(x0, ε),

||Df(x)−Df(x0)|| < |f |d(d− 1)εηd−2.

Proof. The `∞ → `∞ operator norm of a matrix is the maximum of the `1 norms of
its rows, so we need to bound the `1 norm of each row of Df(x)−Df(x0). Without
loss of generality suppose n = 1; in other words, work with a fixed row of the matrix.
The quantity we want to bound is

A =

m∑
i=1

|∂if(x)− ∂if(x0)|,

where ∂if denotes the partial derivative of f with respect to the ith coordinate.
Splitting this as a sum over the monomials of f , it suffices, by the triangle inequality,
to prove that A < e(e−1)εηe−2 when f is a (monic) monomial of total degree e ≤ d.
Using the mean value theorem applied to the function g(t) = ∂if(x0 + t(x− x0)),
we have

∂if(x)− ∂if(x0) =

m∑
j=1

∂2ijf(vi)(x− x0)j

for some vi on the line segment between x0 and x (where (x− x0)j denotes the jth
coordinate of the vector x− x0). Therefore,

A ≤
m∑
i=1

∣∣∣∣∣∣
m∑
j=1

∂2ijf(vi)(x− x0)j

∣∣∣∣∣∣ < ε

m∑
i,j=1

∣∣∂2ijf(vi)
∣∣

since the `∞ norm |x − x0| is bounded by ε. Write f =
∏m
k=1 x

ek
k . Then ∂2ijf(vi)

equals a monomial of degree e− 2 times either eiej if i 6= j, or ei(ei − 1) if i = j.
Because η ≥ max(|vi|, 1), the monomial is bounded by ηe−2. Summing, we obtain

A < εηe−2

 m∑
i,j=1

eiej −
m∑
i=1

ei

 = εηe−2e(e− 1),

as desired. �

Corollary 3.4. With notation as in Lemma 3.33.3, if there exists a linear operator
T : Rn → Rm such that

||Df(x0) ◦ T − idRn ||+ ε |f |d(d− 1)ηd−2||T || < 1− ||T || · |f(x0)|
ε

,

then there exists x∗ ∈ B(x0, ε) such that f(x∗) = 0, and the zero locus f−1(0) is
locally a manifold of dimension m− n.
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Proof. Using ||Df(x)◦T − idRn || ≤ ||Df(x)−Df(x0)|| · ||T ||+ ||Df(x0)◦T − idRn ||,
we see that the hypotheses of Theorem 3.13.1 are met. �

4. Simplices in quaternionic projective spaces

4.1. Generic case. The definition gives one characterization of tight N -point
simplices; we simply impose |xi|2 = 1 for each i and |〈xi, xj〉|2 = (N −d)/(d(N − 1))
for i < j. In fact, tight simplices can be characterized even more succinctly: it can be
shown that

∑
i,j |〈xi, xj〉|2 ≥ N2/d, with equality iff {x1, . . . , xN} is a tight simplex.

Both of these descriptions, though, suffer from the problem that the imposed
conditions are singular ; loosely put, if a set of points satisfies the conditions, then it
does so “just barely.” For instance, if we define f : HN → RN+1 by

f(x1, . . . , xN ) =
(
|x1|2 − 1, . . . , |xN |2 − 1,

∑
i,j

|〈xi, xj〉|2 −N2/d
)
,

then the fact that the last coordinate is always nonnegative implies that the last row
of Df is zero at a tight simplex. Therefore it is hopeless to try to prove existence by
applying Theorem 3.13.1. Setting all the inner products equal to (N − d)/(d(N − 1))
suffers from the same problem, because

1

N(N − 1)

N∑
i,j=1
i 6=j

|〈xi, xj〉|2 ≥
N − d
d(N − 1)

for all x1, . . . , xN (see the proof of Proposition 2.42.4).
Fortunately, it is generally possible to recast the conditions describing tight

simplices so that the Jacobian of the associated polynomial map becomes surjective.

Proposition 4.1. Suppose x1, . . . , xN ∈ Hd (d > 1) and w1, . . . , wN ∈ R satisfy
the following conditions:

(a) |xi|2 = 1 for i = 1, . . . , N ,
(b) |〈xi, xj〉|2 = |〈xi′ , xj′〉|2 for 1 ≤ i < j ≤ N and 1 ≤ i′ < j′ ≤ N , and

(c)
∑N
i=1 wixix

†
i = Id.

Then w1 = · · · = wN = d/N and {x1, . . . , xN} is a tight simplex in HPd−1.

Proof. Define Πi = xix
†
i , and let α denote the common inner product |〈xi, xj〉|2 for

i 6= j. By the first condition we have 〈Πi, Id〉 = 1 for each i. Thus

d = 〈Id, Id〉 =

N∑
i=1

wi〈Πi, Id〉 =

N∑
i=1

wi.

Moreover, using equation (2.12.1) we have 〈Πi,Πi〉 = 1 and 〈Πi,Πj〉 = α for all i 6= j.
Thus, for any j,

1 = 〈Πj , Id〉 =

N∑
i=1

wi〈Πj ,Πi〉 = (1− α)wj + α ·
N∑
i=1

wi = (1− α)wj + αd.

It follows that wj = (1−αd)/(1−α) for each j. Substituting back into the equation∑N
i=1 wi = d yields α = (N − d)/(d(N − 1)), from which the result follows. �
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Using Proposition 4.14.1, we can view tight simplices of N points in HPd−1 as the
solutions of a system of

N +

(
N(N − 1)

2
− 1

)
+ (2d2 − d) real constraints

in

N(4d+ 1) real variables.

In situations where Theorem 3.13.1 applies to this system, we get a solution space of
dimension (number of variables)− (number of constraints). This separately counts
each unit-norm lift of the N elements of HPd−1, so the space of simplices has
codimension 3N . Moreover, the space of simplices is invariant under the action of
the symmetry group of HPd−1, and we are most interested in the quotient, i.e., the
moduli space of simplices. This symmetry group, the compact symplectic group
Sp(d) (strictly speaking, modulo its center {±1}), has real dimension d(2d + 1).
Thus the actual dimension of the moduli space of simplices, local to this particular
solution, is at least

(4.1) r(N,HPd−1) := (4d− 3)N − N(N − 1)

2
− 4d2 + 1

when Theorem 3.13.1 and Proposition 4.14.1 apply. Equality holds if the simplices in this
neighborhood have finite stabilizers (in which case the moduli space of simplices is
locally an orbifold of the desired dimension); in any case, the moduli space always
has dimension at least r(N,HPd−1).

The discussion above is informal in the case of a positive-dimensional stabilizer,
but it is not difficult to make the lower bound rigorous for topological dimension.
Specifically, the solution space X of the system of equations from Proposition 4.14.1 is
a compact metric space, and locally a manifold of dimension r(N,HPd−1) + 3N +
dim Sp(d) near the solution we find. Thus its topological dimension is at least that
large. The moduli space is X/G, where G = Sp(1)N × Sp(d). Because G is compact,
the quotient map X → X/G is closed and X/G is Hausdorff. Thus, we can apply
topological dimension theory for separable metric spaces to conclude that

dim(X/G) ≥ dimX− dimG ≥ r(N,HPd−1),

as desired (see Theorem VI 7 from [HW41HW41, p. 91]).
Note that Gale duality, which replaces d with N − d, preserves r(N,HPd−1), as

one would expect. Furthermore, because r(N,HPd−1) is quadratic in N , it is also
symmetric about the midpoint of the range in which it is positive. Specifically,
r(N,HPd−1) = r(8d− 5−N,HPd−1).

While a priori it is possible to have tight simplices of up to N = 2d2 − d points,
we only have r(N,HPd−1) ≥ 0 for N between roughly (4− 2

√
2)d and (4 + 2

√
2)d.

That does not rule out larger tight simplices, but it does mean that this approach
using Proposition 4.14.1 and Theorem 3.13.1 could not prove their existence. We believe
that outside of this range, only sporadic examples will exist in general, but we
conjecture that tight simplices always exist within the range where r(N,HPd−1) ≥ 0,
at least if one stays away from the boundary:

Conjecture 4.2. As d→∞, there exist tight N -point simplices in HPd−1 for all
N satisfying

(4− 2
√

2 + o(1))d ≤ N ≤ (4 + 2
√

2− o(1))d.
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Remark 4.3. We emphasize that r(N,HPd−1) is defined by (4.14.1). The assertion
that the moduli space of simplices locally has dimension r(N,HPd−1) is justified
only when (i) we find a numerical solution of the conditions of Proposition 4.14.1
to which Theorem 3.13.1 applies, and (ii) the action of the symmetry group on our
simplex has finite (zero-dimensional) stabilizer. Regarding (ii), we have checked
this rigorously in all the cases in part (a) of Tables 4.14.1–4.44.4 (see §7.37.3). In Table 5.15.1,
which deals with OP2, only 5-point simplices fail to satisfy condition (ii). In that
case there is a 3-dimensional stabilizer. We accounted for this in Table 5.15.1.

Remark 4.4. Similar calculations based on the real and complex analogues of
Proposition 4.14.1 yield

r(N,RPd−1) = dN − N(N − 1)

2
− d2 + 1

and

r(N,CPd−1) = (2d− 1)N − N(N − 1)

2
− 2d2 + 2.

Neither quantity is ever positive when d > 2, which explains why our methods do
not apply to real and complex projective spaces: the system of equations cannot be
nonsingular for any tight simplex whose stabilizer is zero-dimensional.

When we attempt to apply Proposition 4.14.1, there are three possible outcomes:

(a) we find an approximate numerical solution with surjective Jacobian, in which
case we can prove existence using Theorem 3.13.1,

(b) we find an approximate numerical solution, but the Jacobian at that point
is not surjective, or

(c) we cannot even find an approximate numerical solution to the system, in
which case we conjecture that there exists no tight simplex.

In a few cases we encountered a fourth possibility:

(d) we find what appears to be an approximate solution but we are unable to
converge to greater precision.

When this situation arose we tried both Newton’s method and gradient descent
for energy minimization (see §7.27.2), but we were unable to improve the error in the
constraints beyond 10−5 (as compared to a numerical error of about 10−15 for cases
(a) and (b)). In these cases we make no conjecture as to existence or non-existence
of solutions.

Tables 4.14.1, 4.24.2, 4.34.3, and 4.44.4 list our results for d = 3, d = 4, d = 5, and
d = 6, respectively. Each table lists all values of N from d+ 2 to the upper bound
2d2− d from Proposition 2.22.2. There is no intrinsic problem with extending to larger
dimensions, although the calculations become increasingly time-consuming.

Theorem 4.5. For the values of (N, d) listed in part (a) of Tables 4.14.1 through 4.44.4,
there exist tight N -point simplices in HPd−1.

In fact, near the points found by our computer program and exhibited in the
auxiliary files, the moduli space of simplices has dimension exactly r(N,HPd−1). In
the case of a singular Jacobian (part (b) of the tables) we report the rank deficiency
(i.e., dimW − rankDf(x∗) in the terminology of Theorem 3.13.1).

In Table 4.34.3, i.e., in HP4, we first observe a gap between the tight simplices of
sizes d and d+ 1 that always exist in HPd−1 and the range of simplices for which
our method proves existence. The gap is real: there exists no 7-point tight simplex
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Table 4.1. Cases in HP2: (a) proven existence of tight simplices;
(b) singular Jacobian; (c) conjectured nonexistence.

N r(N,HP2)

5 0
6 4
7 7
8 9
9 10
10 10
11 9

(a)

N rank deficiency

12 2
13 2
15 14

(b)

N

14

(c)

Table 4.2. Cases in HP3: (a) proven existence of tight simplices;
(c) conjectured nonexistence.

N r(N,HP3) N r(N,HP3)

6 0 14 28
7 7 15 27
8 13 16 25
9 18 17 22
10 22 18 18
11 25 19 13
12 27 20 7
13 28 21 0

(a)

N

22–28

(c)

Table 4.3. Cases in HP4: (a) proven existence of tight simplices;
(c) conjectured nonexistence (proven for N = 7); (d) ambiguous
numerical results.

N r(N,HP4) N r(N,HP4) N r(N,HP4)

8 9 15 51 22 44
9 18 16 53 23 39
10 26 17 54 24 33
11 33 18 54 25 26
12 39 19 53 26 18
13 44 20 51 27 9
14 48 21 48

(a)

N

7
29–45

(c)

N

28

(d)
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Table 4.4. Cases in HP5: (a) proven existence of tight simplices;
(c) conjectured nonexistence (proven for N = 8); (d) ambiguous
numerical results.

N r(N,HP5) N r(N,HP5) N r(N,HP5)

9 10 18 82 27 73
10 22 19 85 28 67
11 33 20 87 29 60
12 43 21 88 30 52
13 52 22 88 31 43
14 60 23 87 32 33
15 67 24 85 33 22
16 73 25 82 34 10
17 78 26 78

(a)

N

8
36–66

(c)

N

35

(d)

in HP4, because of Corollary 2.132.13. Similarly, there exists no 8-point tight simplex
in HP5.

4.2. 12- and 13-point simplices. The cases of 12- and 13-point simplices are
somewhat special: the system of constraints specified by Proposition 4.14.1 has a rank
deficiency. To prove existence of solutions using Theorem 3.13.1, a different approach
is needed.

We take as our starting point the following observation: not only do tight 12-point
simplices exist (numerically), but actually 12-point cyclic-symmetric simplices exist
(again, numerically). By this we mean a simplex such that, if (x, y, z) ∈ H3 is a
point in it, then so are (y, z, x) and (z, x, y), and these are three distinct points in
HP2.

We would like to adapt Proposition 4.14.1 to find simplices with cyclic symmetry.
Imposing this symmetry reduces the number of degrees of freedom we have, but it
also reduces the number of conditions we need to check. Fortunately, we end up
with a set of constraints that has a surjective Jacobian at a tight simplex.

For convenience we will state the result only for d = 3, but it naturally generalizes
to any dimension (along the lines of Proposition 6.56.5).

Proposition 4.6. Let σ be the cyclic-shift automorphism σ(a, b, c) = (b, c, a). Sup-
pose x1, . . . , x3m ∈ H3 and w1, . . . , w3m ∈ R satisfy the following conditions:

(a) xm+i = σ(xi) for i = 1, . . . , 2m,
(b) wm+i = wi for i = 1, . . . , 2m,
(c) |xi|2 = 1 for i = 1, . . . ,m,
(d) the squared inner products |〈xi, xj〉|2 for i = 1, . . . ,m and the following

values of j are all equal: (i) j = i+m, (ii) i < j ≤ m, (iii) i+m < j ≤ 2m,
(iv) i+ 2m < j ≤ 3m, and

(e) the matrix
∑3m
i=1 wixix

†
i has 1, 1 entry equal to 1 and vanishing 1, 2 entry.

Then w1 = · · · = w3m = 1/m and {x1, . . . , x3m} is a tight simplex in HP2.

Proof. By repeated applications of 〈xi, xj〉 = 〈σ(xi), σ(xj)〉, it easily follows that
{x1, . . . , x3m} is a simplex.
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Having shown that, now consider the matrix M =
∑3m
i=1 wixix

†
i . Rewriting M as∑m

i=1 wi(xix
†
i + σ(xi)σ(xi)

† + σ2(xi)σ
2(xi)

†), we see that M is cyclic-symmetric; in
other words, it is invariant under conjugation by the permutation σ. Of course M
is also Hermitian. Combining these two properties, it must be of the form

M =

r s s̄
s̄ r s
s s̄ r


for some r ∈ R and s ∈ H. The last condition in the proposition statement forces
r = 1 and s = 0, so in fact M = I3.

Therefore, {x1, . . . , x3m} is a simplex with
∑3m
i=1 wixix

†
i = I3, and we complete

the proof by applying Proposition 4.14.1. �

Applying the constraints in the above proposition with m = 4, we get a surjective
Jacobian in Theorem 3.13.1, which proves the following result.

Theorem 4.7. There is a tight simplex of 12 points in HP2. In fact, there is such
a tight simplex with cyclic symmetry.

Experimentally it appears that tight simplices with cyclic symmetry exist in
other cases (e.g., 6- and 9-point simplices in HP2). In those cases we do not need to
use the symmetry to establish the existence of tight simplices, though.

For 13-point simplices, we wish to follow a similar approach to bypass the rank-
deficiency issue, but we must allow fixed points of the cyclic shift. In fact, there
are cyclic-symmetric 13-point tight simplices consisting of 12 points with cyclic
symmetry as above (i.e., four equivalence classes under the cyclic-shift operator)
plus one extra point which is invariant under the cyclic-shift operator.

Proposition 4.8. Let σ be the cyclic-shift automorphism σ(a, b, c) = (b, c, a). Sup-
pose x1, . . . , x3m ∈ H3 satisfy the following conditions:

(a) xm+i = σ(xi) for i = 1, . . . , 2m,
(b) |xi|2 = 1 for i = 1, . . . ,m,
(c) the squared inner products |〈xi, xj〉|2 for i = 1, . . . ,m and the following

values of j are all equal: (i) j = i+m, (ii) i < j ≤ m, (iii) i+m < j ≤ 2m,
(iv) i+ 2m < j ≤ 3m, and

(d) the 1, 2 entry of the matrix
∑3m
i=1 xix

†
i has real part 1/6 and magnitude 1/3.

Then there is a unique point x3m+1 ∈ HP2 such that {x1, . . . , x3m, x3m+1} is a tight
simplex, and that point satisfies σ(x3m+1) = x3m+1.

Proof. A tight (3m+ 1)-point simplex {x1, . . . , x3m+1} must satisfy

3m+1∑
i=1

xix
†
i =

3m+ 1

3
I3.

Thus the matrix x3m+1x
†
3m+1 is determined by the other data; since a point in

projective space is determined by its projection matrix, this proves uniqueness. It
also proves that, if such a point x3m+1 exists, then it must satisfy σ(x3m+1) = x3m+1

up to scalar multiplication (by a cube root of unity in H); this is because otherwise

σ({x1, . . . , x3m, x3m+1}) = {x1, . . . , x3m, σ(x3m+1)}

would be a distinct tight simplex.
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Define M =
∑3m
i=1 xix

†
i . This matrix is Hermitian and cyclic-symmetric, so as in

the proof of Proposition 4.64.6 it is of the form

M =

r s s̄
s̄ r s
s s̄ r


for some r ∈ R and s ∈ H. Each projection xix

†
i has trace 1, so TrM = 3m and

thus r = m. Let

Π :=
3m+ 1

3
I3 −M

=

1/3 −s −s̄
−s̄ 1/3 −s
−s −s̄ 1/3

 .

Being Hermitian and of trace 1, Π is a projection matrix of rank 1 iff 3s2 = −s̄, as
one can see by solving Π2 = Π. The last hypothesis in the proposition statement
implies that −3s is a cube root of unity in H, from which we see that this condition
is satisfied.

Let x3m+1 ∈ HP2 be the point satisfying Π = x3m+1x
†
3m+1. We know that

{x1, . . . , x3m} is a regular simplex, as in Proposition 4.64.6. For i = 1, . . . , 3m define

Πi = xix
†
i and let α be the common inner product 〈Πi,Πj〉 (for i, j ≤ 3m with

i 6= j). By the definition of Π,

(4.2) Π +

3m∑
i=1

Πi =
3m+ 1

3
I3.

Since 〈Πi,Πj〉 = α for i 6= j and 〈Πi,Πi〉 = 1, the symmetry of (4.24.2) implies that
the inner products 〈Π,Πi〉 are all equal; call their common value β. Taking the
inner product of (4.24.2) with Π and Πi yields

1 + 3mβ = (3m+ 1)/3 and

β + (3m− 1)α+ 1 = (3m+ 1)/3,

respectively. Subtracting shows that α = β, so {x1, . . . , x3m+1} is a simplex, and it
is tight by (4.24.2). �

We get a surjective Jacobian when we apply the conditions of the above proposition
in Theorem 3.13.1 with m = 4, proving the following result.

Theorem 4.9. There is a tight simplex of 13 points in HP2. In fact, there is such
a tight simplex with cyclic symmetry.

Theorems 4.74.7 and 4.94.9 establish the existence of tight simplices, and their proof
could also provide the dimension of the space of tight simplices with cyclic symmetry.
They cannot, though, tell us the dimension of the full space of tight simplices.

If Proposition 4.14.1 had applied then we would have concluded that, in some
neighborhood, the space of tight simplices of 12 (resp., 13) points in HP2 has
dimension 7 (resp., 4). The observed rank deficiency of two has several possible
explanations, including the following: it might mean that two of the constraints
are redundant, so that the space of tight simplices is two dimensions larger than
predicted; it might mean that the constraints become degenerate at the solutions,
but the space of tight simplices is still a manifold; or it might mean that the space
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of tight simplices is not even locally a manifold. Based on numerical evidence (see
§7.57.5), we conjecture that the first possibility holds.

Conjecture 4.10. There exists a 12-point (resp., 13-point) tight simplex in HP2

such that, in a neighborhood thereof, the space of tight simplices has dimension 9
(resp., 6).

4.3. 15-point simplices. The case of 15 points in HP2 is special for a few reasons.
First, it may be the only case in quaternionic projective spaces where the cardinality
upper bound in Proposition 2.22.2 is achieved (beyond HP1, which is S4 and clearly
contains a 6-point simplex). Also, in comparison with the other cases in Tables 4.14.1,
this case has especially large rank deficiency. This suggests that the moduli space
of simplices is of a larger dimension than r(15,HP2). That turns out to be correct,
as we now show.

Proposition 4.11. Suppose x1, . . . , x15 ∈ H3 satisfy

〈Γi,Γj〉 = − 1

21
for i 6= j,

where

Γi := xix
†
i −

1

3
|xi|2I3.

Suppose additionally that |xi|4 ∈ [1− 10−6, 1 + 10−6] for each i. Then |xi| = 1 and
{x1, . . . , x15} is a tight simplex in HP2.

We do not think the assumption |xi|4 ∈ [1− 10−6, 1 + 10−6] is necessary for the
proposition to hold, but it is easy to verify in our applications and lets us prove the
result with local calculations. This proof and that of Proposition 5.85.8 will be based
on two technical lemmas (Lemmas 4.144.14 and 4.154.15), which we defer until the end of
the section. It would be straightforward to replace them in our applications with
bounds computed using interval arithmetic (see §7.27.2), but they are simple enough
to prove by hand, so we do so below.

Proof. For each i write |xi|4 = 1 + δi, and let δ = maxi |δi|. It suffices to show δ = 0,
because {x1, . . . , x15} is then a tight simplex. Specifically, define ηi = (1 + δi)

−1/2

and let Πi = xix
†
i/|xi|2 = ηixix

†
i denote the projection matrix associated to xi.

Then

〈Πi,Πj〉 = ηiηj〈Γi,Γj〉+
1

3
=

{
1 if i = j, and

−ηiηj/21 + 1/3 if i 6= j.

If ηi = 1 for all i, then these inner products agree with the desired value 2/7 in a
tight simplex of 15 points.

Our strategy is to show that nonnegativity of the second zonal harmonic sum
forces δ = 0, given a rank condition coming from the fact that 15 equals the
dimension of the space of Hermitian matrices.

Recall that the zonal harmonics on HPd−1 are given by Jacobi polynomials

P
(2d−3,1)
k (2t− 1). Specifically, the functions

Kk(x, y) = P
(2d−3,1)
k (2|〈x, y〉|2 − 1)

are positive-definite kernels on HPd−1. Let Σk be the sum of the kernel Kk(x, y)
over the projective code determined by {x1, . . . , x15}. Then positive definiteness
implies Σk ≥ 0.
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We will require only Σ2. As P2(3, 1)(2t − 1) = 28t2 − 21t + 3, we can write

Σ2 in terms of the moments
∑15
i,j=1〈Πi,Πj〉k with k ≤ 2. If δ = 0, then Σ2 = 0,

and we wish to compute it to second order in δ1, . . . , δ15 in terms of the moments
m1 :=

∑
i δi and m2 :=

∑
i δ

2
i . Applying Lemma 4.144.14 with Pi,j = 〈Πi,Πj〉, we find

that

(4.3)

∣∣∣∣Σ2 −
(
−10

3
m1 +

23

252
m2

1 +
719

252
m2

)∣∣∣∣ ≤ 8295 · δ3.

If we could approximate Σ2 sufficiently well by a negative-definite quadratic form
in δ1, . . . , δ15, then Σ2 ≥ 0 would imply δ = 0. However, the approximation in (4.34.3)
is not negative definite. To make it so, we must add correction terms based on
additional constraints satisfied by the perturbations δi.

These additional constraints come from a singular Gram matrix. We have

〈Γi,Γi〉 = 2
3 (1 + δi), and the Gram matrix of the elements

√
2
3Γi is

G =

1 + δ1 − 1
14

. . .

− 1
14 1 + δN

 .

Each of Γ1, . . . ,Γ15 is a traceless Hermitian matrix, so they must be linearly depen-
dent, because the space of such matrices has dimension 14. Thus, the Gram matrix
G must be singular. Let D := 1414 det(G)/1512 be its determinant, normalized as
in Lemma 4.154.15. Of course D = 0, but we know from Lemma 4.154.15 that

|D − 15m1 − 14(m2
1 −m2)| ≤ 50625 · δ3

and

|D2 − 225m2
1| ≤ 4556250 · δ3.

Because D (and so D2) must vanish and Σ2 must be nonnegative,

Σ′2 := 4200D − 269D2 + 18900Σ2

must be nonnegative as well. However, from the above inequalities, we have

|Σ′2 + 4875m2| ≤ 16 · 108 · δ3.

We have −4875m2 ≤ −4875 · δ2, and the assumption δ ≤ 10−6 implies that

16 · 108 · δ3 ≤ 4875 · δ2.

It follows that Σ′2 ≤ 0, with equality iff δ = 0. Because Σ′2 is nonnegative, we
conclude that indeed equality must hold, as desired. �

Using this system of constraints, we do get a nonsingular Jacobian matrix and
hence we can apply Theorem 3.13.1. This yields a 75-dimensional solution space; after
subtracting overcounting and symmetries, we arrive at the following.

Theorem 4.12. There is a tight simplex of 15 points in HP2. In fact, locally there
is a 9-dimensional space of such simplices.44

4As opposed to the absurd −5 predicted by r(15,HP2).
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Theorem 4.124.12 establishes the existence of a tight 2-design in HP2. The common
inner product in this simplex is 2/7, contrary to a theorem of Bannai and Hoggar
asserting that the inner products in tight designs are always reciprocals of integers
[BH89BH89, Corollary 1.7(b)]. The case of 2-designs is not addressed in their proof, and
Bannai has informed us that this was an oversight in the theorem statement. See
also [L09L09] for another correction (the icosahedron is a tight 5-design in CP1 with
irrational inner products).

Tight 2-designs in HPd−1 are quaternionic analogues of SIC-POVMs [RB+04RB+04].
Because SIC-POVMs seem to exist in CPd−1 for every d, it is natural to speculate
that tight quaternionic 2-designs should be even more abundant, but we have not
found any examples with d > 3.

So far, we have shown that there are tight simplices in HP2 of every size up to
15 except for 14.

Conjecture 4.13. There does not exist a tight simplex of 14 points in HP2.

Similarly, we will see in §55 that there are tight simplices in OP2 of every size up
to 27 except for 26. In RP2 every size up to 6 except for 5 occurs, while in CP2 we
see every size up to 9 except for 5 and 8. It seems unlikely to be a coincidence that
the second largest possible size is always missing in projective planes, but we do
not have a proof beyond RP2. (As explained after Lemma 2.92.9, linear programming
bounds suffice to disprove the existence of tight 5-point simplices in RP2. However,
they do not rule out the analogous cases in CP2, HP2, or OP2.)

In the remainder of this section, we state and prove the deferred lemmas from
the proof of Proposition 4.114.11.

Lemma 4.14. Given d ≥ 2, N > 1, and δ1, . . . , δN with δ := maxi |δi| ≤ 1/4, set
ηi = (1 + δi)

−1/2, λ = − d−1
d(N−1) , m1 =

∑
i δi, m2 =

∑
i δ

2
i , and

Pi,j =

{
1 if i = j, and

ηiηjλ+ 1/d if i 6= j.

Then the moments Sk :=
∑N
i,j=1 P

k
i,j satisfy the following bounds. Let

T0 = N2,

T1 =
N2

d
+
d− 1

d
m1 + λ

(
3N

4
− 1

)
m2 +

λ

4
m2

1, and

T2 =
N2(N + d2 − 2d)

d2(N − 1)
− 2(N − d)λ

d
m1

+ λ

(
λ+

1

2d

)
m2

1 −
λ

d

(
(2 + λ)d− 3N

2

)
m2.

Then

S0 = T0,

|S1 − T1| ≤ 5Nδ3, and

|S2 − T2| ≤ 16Nδ3.
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Proof. It is clear that S0 = N2. For S1 and S2, we begin by explicitly computing
that S1 equals

λ

(
N∑
i=1

ηi

)2

− λ

(
N∑
i=1

η2i

)
+
N2 −N +Nd

d

and S2 equals

λ2

(
N∑
i=1

η2i

)2

− λ2
(

N∑
i=1

η4i

)
+

2λ

d

(
N∑
i=1

ηi

)2

− 2λ

d

(
N∑
i=1

η2i

)
+
N2 +Nd2 −N

d2
.

Now, using ηi = (1 + δi)
−1/2and δ ≤ 1/4, Taylor’s theorem with the Lagrange

form of the remainder yields the estimates∣∣∣∣ηai − (1− a

2
δi +

a(a+ 2)

4
· δ

2
i

2

)∣∣∣∣ ≤ 4

81

(
4

3

)a/2
a(a+ 2)(a+ 4) · δ3

for all a > 0. Taking a = 1, 2, 4, we get the bounds∣∣∣∣∣
N∑
i=1

ηi −
(
N − m1

2
+

3

8
m2

)∣∣∣∣∣ ≤ Nδ3,∣∣∣∣∣
N∑
i=1

η2i −
(
N −m1 +m2

)∣∣∣∣∣ ≤ 4Nδ3,∣∣∣∣∣
N∑
i=1

η4i −
(
N − 2m1 + 3m2

)∣∣∣∣∣ ≤ 17Nδ3,

respectively.
We also have the simple bounds |mi| ≤ Nδi. Using these, we find∣∣∣∣∣∣

(
N∑
i=1

ηi

)2

−
(
N2 −Nm1 +

3

4
Nm2 +

m2
1

4

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣
(

N∑
i=1

ηi

)2

−
(
N − m1

2
+

3

8
m2

)2
∣∣∣∣∣∣+

∣∣∣∣38m1m2 −
9

64
m2

2

∣∣∣∣
≤ Nδ3 ·

∣∣∣∣∣
N∑
i=1

ηi +N − m1

2
+

3

8
m2

∣∣∣∣∣+N2

(
3

8
· δ3 +

9

64
· δ4
)

≤ Nδ3 ·
(

2

∣∣∣∣N − m1

2
+

3

8
m2

∣∣∣∣+Nδ3
)

+N2

(
3

8
· δ3 +

9

64
· δ4
)

≤ Nδ3 ·
(

2N

(
1 +

1

2
δ +

3

8
δ2
)

+Nδ3
)

+N2

(
3

8
· δ3 +

9

64
· δ4
)

≤ 3N2δ3.

We similarly compute∣∣∣∣∣∣
(

N∑
i=1

η2i

)2

−
(
N2 − 2Nm1 + 2Nm2 +m2

1

)∣∣∣∣∣∣ ≤ 13N2δ3.
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Combining all of these estimates with d ≥ 2, N ≥ 2, and |λ| ≤ 1/N leads to bounds
of (3N + 4)δ3 and (3N + 17 + 17/N)δ3 for |S1 − T1| and |S2 − T2|, respectively. We
have rounded them up to pleasant multiples of N in the lemma statement. �

Lemma 4.15. Suppose N > 3, and let

D =
(N − 1)N−1

NN−3 det

1 + δ1 − 1
N−1

. . .

− 1
N−1 1 + δN

 ,

where every off-diagonal entry in the above matrix equals −1/(N − 1). Set δ =
maxi |δi|, m1 =

∑
i δi, and m2 =

∑
i δ

2
i . If δ ≤ 1/(2N), then

|D −Nm1 − (N − 1)(m2
1 −m2)| ≤ N4δ3

and ∣∣D2 −N2m2
1

∣∣ ≤ 6N5δ3.

Proof. Let Gr be the r × r matrix with diagonal entries 1 and off-diagonal entries
β. It is easy to show55 that

Dr := det(Gr) =
(
1 + (r − 1)β

)
(1− β)r−1.

Setting β = −1/(N − 1), we have

Dr =
(N − r)Nr−1

(N − 1)r
.

Using this, for

G =

1 + δ1 − 1
N−1

. . .

− 1
N−1 1 + δN


we find that

det(G) = DN +
(∑

i

δi

)
DN−1 +

(∑
i<j

δiδj

)
DN−2 + · · ·+

∏
i

δi

= 0 +
(∑

i

δi

) NN−2

(N − 1)N−1
+
(∑
i<j

δiδj

) 2NN−3

(N − 1)N−2
+ · · ·+

∏
i

δi.

In terms of the moments m1 =
∑
i δi and m2 =

∑
i δ

2
i , the rescaled determinant

D = (N − 1)N−1 det(G)/NN−3 satisfies

|D −Nm1 − (N − 1)(m2
1 −m2)| ≤

∑
k≥3

(
N

k

)
δkN2−k(N − 1)k−1k.

The k = 3 term on the right is (N −1)3(N −2)δ3/2 ≤ N4δ3/2. Because δ ≤ 1/(2N),
each subsequent term diminishes by a factor of at least 1/2. Thus, summing the
geometric series, we have

|D −Nm1 − (N − 1)(m2
1 −m2)| ≤ N4δ3.

5See the footnote in the proof of Proposition 2.22.2.
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Note that the trivial bounds |m1| ≤ Nδ and m2 ≤ Nδ2 imply

|Nm1 + (N − 1)(m2
1 −m2)| ≤ N2δ + (N − 1)(N2δ2 +Nδ2)

= N2δ +N(N2 − 1)δ2

≤ N2δ +N3δ2 ≤ 2N2δ

and therefore |D| ≤ 2N2δ +N4δ3 ≤ 3N2δ. Now, to control D2, we write∣∣D2 − (Nm1 + (N − 1)(m2
1 −m2))2

∣∣ ≤ N4δ3|D +Nm1 + (N − 1)(m2
1 −m2)|

≤ N4δ3(|D|+ |Nm1 + (N − 1)(m2
1 −m2)|)

≤ N4δ3(5N2δ) = 5N6δ4.

Furthermore,

|N2m2
1 − (Nm1 + (N − 1)(m2

1 −m2))2|
≤ 2N(N − 1)|m1|(m2

1 +m2) + (N − 1)2(m2
1 +m2)2

≤ 2N(N − 1)Nδ(N2δ2 +Nδ2) + (N − 1)2(N2δ2 +Nδ2)2

= 2N3(N2 − 1)δ3 +N2(N2 − 1)2δ4 ≤ 3N5δ3.

Combining these two bounds with the triangle inequality and using Nδ ≤ 1/2, we
obtain the asserted bound for |D2 −N2m2

1|. �

5. Simplices in OP2

The study of simplices in OP2 unfolds much like that in HP2; we get essentially
the same results as long as we take care to work in an affine chart. In particular,
we can handle the generic case, 24- and 25-point simplices, and 27-point simplices
using adaptations of Propositions 4.14.1, 4.64.6 and 4.84.8, and 4.114.11, respectively.

5.1. Generic case.

Proposition 5.1. For i = 1, . . . , N , suppose xi = (ai, bi, ci) ∈ R+×O2 and wi ∈ R
satisfy

(a) |ai|2 + |bi|2 + |ci|2 = 1 for i = 1, . . . , N ,
(b) ρ(xi, xj)

2 = ρ(xi′ , xj′)
2 for 1 ≤ i < j ≤ N and 1 ≤ i′ < j′ ≤ N , and

(c)

N∑
i=1

wi

aibi
ci

(āi b̄i c̄i
)

=

1 0 0
0 1 0
0 0 1

.

Then w1 = · · · = wN = 3/N and {x1, . . . , xN} is a tight simplex.

We omit the proof of Proposition 5.15.1 as it is nearly identical to that of Proposition
4.14.1.

We can attempt to apply Proposition 5.15.1 with Theorem 3.13.1 just as we did for
simplices in quaternionic projective spaces. There are

N +

(
N(N − 1)

2
− 1

)
+ 27 real constraints in 18N real variables,

so, when the Jacobian is nonsingular, we get a solution space of dimension (N −
1)(34−N)/2−9. As before, we should deduct the dimension of the symmetry group.
The symmetry group of OP2 is the exceptional Lie group F4, which has dimension
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Table 5.1. Cases in OP2: (a) proven existence of tight simplices;
(b) singular Jacobian; (c) conjectured nonexistence.

N r(N,OP2) N r(N,OP2) N r(N,OP2)

5 0† 12 60 19 74
6 9 13 65 20 72
7 20 14 69 21 69
8 30 15 72 22 65
9 39 16 74 23 60
10 47 17 75
11 54 18 75

(a)

N rank deficiency

24 2
25 2
27 26

N

26

(b) (c)

† Actually r(5,OP2) is not 0; rather, it equals −3. This is the only case
in which the simplex we found has a positive-dimensional stabilizer.

The stabilizer is 3-dimensional, so the actual dimension of the moduli

space, which is what r(5,OP2) is really intended to capture, is 0.

52. Thus, our final expression for the expected local dimension of the moduli space
of simplices is

r(N,OP2) :=
(N − 1)(34−N)

2
− 61.

Again, as with r(N,HPd−1), this formula only applies when, at our numerical
solution, Theorem 3.13.1 applies to the conditions of Proposition 5.15.1 and the simplex
has zero-dimensional stabilizer.

Theorem 5.2. For the values of N listed in part (a) of Table 5.15.1, there exist tight
N -point simplices in OP2.

5.2. 24- and 25-point simplices. The following proposition is proven similarly to
Proposition 4.64.6.

Proposition 5.3. Let σ be the cyclic-shift automorphism σ(a, b, c) = (b, c, a). Sup-
pose x1, . . . , x3m ∈ O3 and w1, . . . , w3m ∈ R satisfy the following conditions:

(a) xm+i = σ(xi) for i = 1, . . . , 2m,
(b) wm+i = wi for i = 1, . . . , 2m,
(c) xi ∈ R+ ×O2 and |xi|2 = 1 for i = 1, . . . ,m,
(d) the squared distances ρ(xi, xj)

2 for i = 1, . . . ,m and the following values of
j are all equal: (i) j = i + m, (ii) i < j ≤ m, (iii) i + m < j ≤ 2m, (iv)
i+ 2m < j ≤ 3m, and
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(e) the matrix
∑3m
i=1 wixix

†
i has 1, 1 entry equal to 1 and vanishing 1, 2 entry.

Then w1 = · · · = w3m = 1/m and {x1, . . . , x3m} is a tight simplex.

Using the conditions of Proposition 5.35.3 with m = 8 in Theorem 3.13.1 yields a
surjective Jacobian, allowing us to prove the following theorem.

Theorem 5.4. There is a tight simplex of 24 points in OP2. In fact, there is such
a tight simplex with cyclic symmetry.

Similarly, to prove the existence of tight simplices with 25 points, we use the
following adaptation of Proposition 4.84.8.

Proposition 5.5. Let σ be the cyclic-shift automorphism σ(a, b, c) = (b, c, a). Sup-
pose x1, . . . , x3m ∈ O3 satisfy the following conditions:

(a) xm+i = σ(xi) for i = 1, . . . , 2m,
(b) xi ∈ R+ ×O2 and |xi|2 = 1 for i = 1, . . . ,m,
(c) the squared distances ρ(xi, xj)

2 for i = 1, . . . ,m and the following values of
j are all equal: (i) j = i + m, (ii) i < j ≤ m, (iii) i + m < j ≤ 2m, (iv)
i+ 2m < j ≤ 3m, and

(d) the 1, 2 entry of the matrix
∑3m
i=1 xix

†
i has real part 1/6 and magnitude 1/3.

Then there is a unique point x3m+1 ∈ OP2 such that {x1, . . . , x3m, x3m+1} is a tight
simplex, and that point satisfies σ(x3m+1) = x3m+1.

Using the conditions above with m = 8 in Theorem 3.13.1 yields a surjective
Jacobian.

Theorem 5.6. There is a tight simplex of 25 points in OP2. In fact, there is such
a tight simplex with cyclic symmetry.

Continuing the correspondence with 12- and 13-point simplices in HP2, based on
numerical evidence we conjecture the following.

Conjecture 5.7. There exists a 24-point (resp., 25-point) tight simplex in OP2

such that, in a neighborhood thereof, the space of tight simplices has dimension 56
(resp., 49).

5.3. 27-point simplices.

Proposition 5.8. Suppose xi = (ai, bi, ci) ∈ R+ ×O2 satisfy

〈Γi,Γj〉 = − 1

39
for i 6= j,

where

Γi :=

aibi
ci

(āi b̄i c̄i
)
− 1

3
(a2i + |bi|2 + |ci|2)I3.

Suppose additionally that |xi|4 ∈ [1− 10−7, 1 + 10−7] for each i. Then |xi| = 1 and
{x1, . . . , x27} determines a tight simplex in OP2.

Proof. We use the same proof technique as Proposition 4.114.11, with the only difference
being the constants appearing in the proof.

As before, we write |xi|4 = 1 + δi, and let δ = maxi |δi|. Let G be the Gram

matrix of
√

2
3Γ1, . . .

√
2
3Γ27. Then det(G) = 0, and by Lemma 4.154.15 the normalized

determinant D := 2626 det(G)/2724 satisfies

|D − 27m1 − 26(m2
1 −m2)| ≤ 531441 · δ3
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and
|D2 − 729m2

1| ≤ 86093442 · δ3.
The second zonal harmonic on OP2 is given by the Jacobi polynomial

P
(7,3)
2 (2t− 1) = 91t2 − 65t+ 10.

Let Σ2 be the sum of the kernel K2(x, y) := P
(7,3)
2 (2|〈x, y〉|2− 1) over the projective

code determined by {x1, . . . , x27}, so Σ2 ≥ 0. By Lemma 4.144.14,∣∣∣∣Σ2 −
(
−6m1 +

41

468
m2

1 +
2429

468
m2

)∣∣∣∣ ≤ 48087 · δ3.

Because D = 0,
Σ′2 := 75816D − 2745D2 + 341172Σ2

must be nonnegative, but |Σ′2 + 200475m2| ≤ 293024167110 · δ3. Because m2 ≥ δ2,
when δ ≤ 10−7 we have Σ′2 ≤ 0 with equality only when δ = 0. Thus, δ = 0 and
{x1, . . . , x27} determines a tight simplex in OP2. �

Applying Theorem 3.13.1 with the conditions of the above proposition, we find a
suitable point for which the Jacobian is surjective.

Theorem 5.9. There is a tight simplex of 27 points in OP2. In fact, locally there
is a 56-dimensional space of such simplices.

Theorem 5.95.9 establishes the existence of a tight 2-design in OP2. Such designs
were previously conjectured not to exist [H82H82, p. 251]. It is known [H84bH84b] that
tight t-designs in OP2 can only exist for t = 2 and t = 5, and there is an explicit
construction of a 819-point tight 5-design [C83C83], so Theorem 5.95.9 completes the list
of t for which tight t-designs exist in OP2.

Conjecture 5.10. There does not exist a tight simplex of 26 points in OP2.

See also the discussion after Conjecture 4.134.13.

6. Simplices in real Grassmannians

Our techniques also apply to show the existence of many simplices in Grass-
mannian spaces. The real Grassmannian G(m,n) is the space of all m-dimensional
subspaces of Rn. It is a homogeneous space for the orthogonal group O(n), isomor-
phic to O(n)/(O(m)×O(n−m)), and it has dimension m(n−m). These spaces
generalize (real) projective space RPn−1, which is the space of lines in Rn. The
spaces G(m,n) and G(n−m,n) can be identified by associating to each subspace
its orthogonal complement, so in what follows we always assume m ≤ n/2.

Though Grassmannians are generally not 2-point homogeneous spaces, there
are still linear programming bounds [B06B06, BBL08BBL08]. Here we will just consider the
special case of the simplex bound.

When m ≤ n/2, a pair of points in G(m,n) is described by m parameters,
namely the principal angles between the m-dimensional subspaces. Given two
m-dimensional subspaces U and U ′, define sequences of unit vectors u1, . . . , um ∈ U
and u′1, . . . , u

′
m ∈ U ′ inductively so that 〈ui, u′i〉 is maximized subject to 〈ui, uj〉 =

〈u′i, u′j〉 = 0 for j < i. Then the principal angles are θi := arccos〈ui, u′i〉.
The chordal distance on G(m,n) is given by

dc(U,U
′) =

√
sin2 θ1 + · · ·+ sin2 θm.
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Unlike in projective space, the chordal metric on Grassmannians is generally not
equivalent to the geodesic metric

√
θ21 + · · ·+ θ2m. See [CHS96CHS96] for discussion of

why the chordal metric is preferable.
A generator matrix for an element of G(m,n) is a m×n matrix whose rows form

an orthonormal basis of the subspace. Given a generator matrix X, the orthogonal
projection onto the subspace is XtX. Suppose X1 and X2 are generator matrices
for the subspaces U1 and U2, and let Πi = Xt

iXi (for i = 1, 2) be the orthogonal
projection matrices. Then the singular values of the matrix X1X

t
2 are cos θi for

1 ≤ i ≤ m. It follows that

(6.1) dc(U1, U2)2 =
1

2
||Π1 −Π2||2F = m− 〈Π1,Π2〉.

Let Π0 = Π − (m/n)In be the traceless part of the projection matrix. It can be
thought of as a point in RD, where D = m(m+ 1)/2− 1, if we view RD as the space
of trace-zero symmetric matrices. It is easily checked that ||Π0||2F = m(n−m)/n.
Therefore we obtain an isometric embedding U 7→ Π0 of G(m,n) into the sphere

of radius
√
m(n−m)/n in RD under the chordal metric. The simplex bound for

spherical codes gives us the following result.

Proposition 6.1 (Conway, Hardin, and Sloane [CHS96CHS96]). Every N -point simplex
in G(m,n) satisfies

N ≤
(
m+ 1

2

)
,

and every code of N points has squared chordal distance at most

m(n−m)

n
· N

N − 1
.

This squared chordal distance is equivalent to having inner product

(6.2)
m(Nm− n)

n(N − 1)

between orthogonal projection matrices.

Remark 6.2. The m = 1 case of Proposition 6.16.1 is the same as the K = R case
of Proposition 2.22.2 (together with Proposition 2.42.4). Indeed, the proofs of these two
results are essentially the same; they are just phrased in different language.

We say that a simplex in G(m,n) is tight if its minimal chordal distance meets the
upper bound above. Analogously to simplices in projective space, a Grassmannian
simplex is tight iff it is a 1-design (i.e., a 2-design in the terminology of [BCN02BCN02]),
which holds iff the linear programming bound is sharp [B06B06]. If the projection
matrices of the simplex are Π1, . . . ,ΠN , then another equivalent condition for

tightness is
∑N
i=1 Πi = (Nm/n)In.

Conway, Hardin, and Sloane [CHS96CHS96] reported a number of putative tight simplices
based on numerical evidence, but except for a few explicit constructions they did
not present any techniques for rigorous existence proofs. (As in non-real projective
spaces, it is not easy to reconstruct an exact Grassmannian simplex from a numerical
approximation.) The cases with explicit constructions are listed in Table 6.16.1. By
applying our methods, we can certify the existence of simplices for many of the
cases previously identified but not settled.
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Proposition 6.3. Suppose {xi,j ∈ Rn}i=1,...,N
j=1,...,m

and w1, . . . , wN satisfy the following

conditions:

(a) |xi,j | = 1 for all i, j,
(b) for all i and all j < j′, 〈xi,j , xi,j′〉 = 0,
(c) the inner products 〈

∑m
j=1 xi,jx

t
i,j ,
∑m
j=1 xi′,jx

t
i′,j〉 are equal for all distinct

pairs i, i′, and

(d)
∑N
i=1 wi

(∑m
j=1 xi,jx

t
i,j

)
= In.

Then w1 = · · · = wN = n/(Nm) and the subspaces span{xi,1, . . . , xi,m} form a tight
simplex in G(m,n).

Proof. For each i, define Πi =
∑m
j=1 xi,jx

t
i,j . Because {xi,1, . . . , xi,m} is an orthonor-

mal system, this is the projection matrix associated to the plane span{xi,1, . . . , xi,m}.
Using (6.16.1), the third condition guarantees that we have a simplex. Arguing as in
the proof of Proposition 4.14.1, we deduce from the last condition that w1 = · · · =

wN = n/(Nm). Thus
∑N
i=1 Πi = (Nm/n)In; as noted above, this is equivalent to

tightness. �

In many cases the system specified by Proposition 6.36.3 is nonsingular, allowing us
to apply Theorem 3.13.1. This yields the following.

Theorem 6.4. For the values of (N,m, n) listed in the “proven” column of Table
6.26.2, there exist tight N -point simplices in G(m,n,R).

In the context of Proposition 6.36.3, we have Nmn+N real variables and

N ·
(
m+ 1

2

)
+

(
N(N − 1)

2
− 1

)
+

(
n+ 1

2

)
real constraints. Thus, when Theorem 3.13.1 applies, we locally get a solution space
whose dimension is the difference of these counts. Because O(m) acts on the
different representations of each plane, we are overcounting the dimension by N ·

(
m
2

)
.

Moreover, when the symmetry group O(n) of G(m,n) acts with finite stabilizer
on the simplex, we should deduct

(
n
2

)
from our final dimension count. Putting

this all together, when these conditions are satisfied (as in Remark 4.34.3), we get a
neighborhood in which the moduli space of simplices has dimension

(6.3) r(N,G(m,n)) := Nmn− N(N − 3)

2
−Nm2 − n2 + 1.

As in projective spaces, we expect to find tight simplices in most cases where
r(N,G(m,n)) > 0. This parameter counting argument heuristically explains the
large number of tight simplices found in [CHS96CHS96].

We tested all cases up to dimension n = 8, using our own software to search
for numerical solutions and also comparing with the numerical results of Conway,
Hardin, and Sloane [CHS96CHS96]. As with simplices in projective spaces, sometimes
the system specified by Proposition 6.36.3 was singular, and sometimes the numerical
evidence was unclear (as we saw in Tables 4.14.1 and 4.34.3, respectively). These cases
are in the third and fourth columns, respectively, of Table 6.26.2.

In addition to our existence proofs and the previously known explicit constructions,
several Grassmannian tight simplices can be proven to exist using the following
observation: if there is a tight N -point simplex in G(m,n) for some m,n, then there
is a tight N -point simplex in G(km, kn) for all k ≥ 1. This is immediate from block
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Table 6.1. Previously known tight simplices with explicit con-
structions in G(m,n) for n ≤ 8.

(m,n) N Reference

(2, 4) 2–6 [CHS96CHS96, pp. 145–146]
(2, 4) 10 [CHS96CHS96, p. 147]
(2, 6) 9 [CHS96CHS96, p. 154]
(3, 7) 28 [CHS96CHS96, p. 152]
(2, 8) 8 [CHS96CHS96, p. 154]
(2, 8) 20 [CH+99CH+99, p. 135]
(2, 8) 28 [CHS96CHS96, p. 154]

Table 6.2. Tight Grassmannian simplices in G(m,n).

(m,n) Proven Singular Jacobian Ambiguous

(2, 4) 4–6 2, 3, 7, 8, 10
(2, 5) 5–10 4, 11
(2, 6) 5–14 3, 4
(3, 6) 5–16 2–4 17
(2, 7) 6–17 18
(3, 7) 5–22 4, 28 23
(2, 8) 6–21 4, 5, 28
(3, 8) 5–28 4
(4, 8) 5–30 2–4

repetition [C07C07, Proposition 12]. It proves existence for 11 of the singular cases in
Table 6.26.2. This leaves us with only 7 hitherto unresolved cases in which there is
strong numerical evidence for a tight simplex: 4-point simplices in G(2, 5), G(3, 6),
G(3, 7), and G(3, 8); 7- and 8-point simplices in G(2, 4); and 11-point simplices in
G(2, 5). For completeness, we will settle all of these in the following subsection.

We anticipate no difficulty in applying our techniques to complex or quaternionic
Grassmannians, but we have not done so.

6.1. Miscellaneous special cases in Grassmannians. We begin with the case
of 11-point tight simplices in G(2, 5). This can handled in the same way as 13-
point tight simplices in HP2 and 25-point tight simplices in OP2; i.e., we can prove
existence of simplices with cyclic symmetry. We will state the analogous result in
greater generality than we attempted in Proposition 4.84.8 (which was written in the
special case of HP2 rather than a general projective space HPd−1), at the cost of
some additional complexity.

Proposition 6.5. Fix dimensions n > m > 0 and let σ be the cyclic-shift auto-
morphism σ(x1, x2, . . . , xn) = (x2, . . . , xn, x1) on Rn. Set N = nk + 1 and suppose
we have vectors {xi,j ∈ Rn}i=1,...,nk

j=1,...,m
. For each i, define Πi =

∑m
j=1 xi,jx

t
i,j. Define
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ΠN = Nm
n In −

∑
i<N Πi. Suppose that, for some η ∈

(
m
m+1 ,

m
m−1

)
, the following

conditions are satisfied:

(a) xk+i,j = σ(xi,j) for all i ≤ (n− 1)k and all j,
(b) |xi,j | = 1 for all i ≤ k and all j,
(c) for all i ≤ k and all j < j′, 〈xi,j , xi,j′〉 = 0,
(d) the inner products 〈Πi,Πi′〉 are all equal for (i) i ≤ k, i′ = i + qk, and

q = 1, . . . , bn2 c and (ii) i ≤ k−1, i′ = i′0+qk, i < i′0 ≤ k, and q = 0, . . . , n−1,
and

(e) the first bn2 c+ 1 entries in the first row of Π2
N − ηΠN are all zero.

Then η = 1, ΠN is a projection matrix of rank m, and the projection matrices
{Πi}i≤N determine a tight N -point simplex in G(m,n).

Proof. The automorphism σ of Rn determines an automorphism of G(m,n) by
acting simultaneously on basis vectors, and this latter automorphism is an isom-
etry. The first condition states that the planes spanned by {xi,1, . . . , xi,m} and
{xk+i,1, . . . , xk+i,m} are related by this isometry; thus, taking all i < N , we have k
orbits under the cyclic-shift action, each of size n. The next two conditions ensure
that the matrices Πi for i < N are orthogonal projections of rank m. Thus the
inner products amongst them determine distances in G(m,n). Now, by applying the
cyclic-shift isometry we see that the fourth condition is sufficient to force {Πi}i<N
to determine a regular simplex. Let α = 〈Πi,Πi′〉 be its common inner product.

Consider now the matrix ΠN . It is symmetric, being a linear combination of
symmetric matrices. Moreover, it is cyclic-symmetric, since

∑
i<N Πi is a sum over

orbits of the cyclic shift. It follows that Π2
N − ηΠN also shares these properties.

Now a matrix with cyclic-symmetry is determined by its first row, as the other rows
are just shifts thereof. A matrix which is also symmetric is determined by the first
bn2 c+ 1 entries in the first row. Therefore, by the last condition, Π2

N − ηΠN = 0.
It follows that the eigenvalues of ΠN are all either 0 or η. Let r be the rank of ΠN ,

so that Tr ΠN = rη. But, since Tr Πi = m for all i < N , we have Tr ΠN = m. Hence
η = m/r is m times the reciprocal of an integer. The assumption η ∈

(
m
m+1 ,

m
m−1

)
then forces η = 1, from which we conclude that ΠN is an orthogonal projection
matrix of rank m.

Now we check that 〈Πi,ΠN 〉 = α for all i < N . Since 〈Πi,Πi〉 = m for all i,

(6.4) ΠN =
Nm

n
In −

∑
i<N

Πi,

and 〈Πi,Πi′〉 = α for distinct i, i′ ≤ N − 1, we see that 〈ΠN ,Πi〉 is independent of i.
Let β be this common value. Taking the inner product of (6.46.4) with ΠN and Πi′ ,
we obtain

m =
Nm2

n
− (N − 1)β and

β =
Nm2

n
− (N − 2)α−m,

respectively. Subtracting and canceling the (nonzero) factor of N − 2 yields α = β.
Thus, we have a regular simplex, which is tight by (6.46.4). �

Note that the plane with projection matrix ΠN is the unique plane completing
{Πi}i<N into a tight simplex. This plane is a fixed point for the cyclic-shift action.
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Figure 6.1. Generator matrices for a tight 4-point simplex in G(2, 5).1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 1√
2

0 0 0 0 0
√

2
0 1 0 0 1 0
0 0 1 −1 0 0


1√
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0 0 0
√

2 0 0

 1√
2

1 0 0 0 0 −1

0 0 0 0
√

2 0
0 0 1 1 0 0


Figure 6.2. Generator matrices for a tight 4-point simplex in G(3, 6).

In our case of interest we found a point in which the conditions described in
Proposition 6.56.5 are nonsingular. This yields the following.

Theorem 6.6. There exists a tight 11-point simplex in G(2, 5). In fact, there is
such a tight simplex with cyclic symmetry.

We remark in passing that every approximate 11-point tight simplex in G(2, 5)
we found numerically exhibited a symmetry group conjugate to the cyclic-symmetry
discussed here. With this evidence as well as the fact that r(11, G(2, 5)) = −2 < 0,
we conjecture that every tight 11-point simplex in G(2, 5) has a nontrivial symmetry
group.

We will settle the remaining cases with algebraic constructions. The four cases of
4-point simplices afford constructions using only rationals and quadratic irrationals,
so we give them explicitly here. Given the provided matrices, the proof of the
following theorem consists only of a straightforward calculation.

Theorem 6.7. The four 2× 5 matrices in Figure 6.16.1 are generator matrices whose
corresponding planes form a tight simplex in G(2, 5); i.e., they have orthonormal
rows and the spans of those rows constitute a tight simplex. Similarly, the matrices
in Figures 6.26.2, 6.36.3, and 6.46.4 determine tight simplices in G(3, 6), G(3, 7), and G(3, 8),
respectively.

We are now left with the cases of 7- and 8-point tight simplices in G(2, 4). These
cases are more interesting; the simplest explicit coordinates we have been able to
find for them require algebraic numbers of degree 4 and 6, respectively. Because
of this, instead of presenting the algebraic numbers here we rely on a computer
algebra system to (rigorously) verify the calculation. The computational method is
discussed in §7.47.4. Here we simply record the result.

Theorem 6.8. There exist 7- and 8-point tight simplices in G(2, 4).

We remark in passing that G(2, 4) contains tight simplices of N points for all
N ≤ 10 (the theoretical maximum) except for N = 9. Compared with the other
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
Figure 6.3. Generator matrices for a tight 4-point simplex in G(3, 7).
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 1
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√
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√

3
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√

3 0


Figure 6.4. Generator matrices for a tight 4-point simplex in G(3, 8).

spaces studied in this paper, only the quaternionic and octonionic projective planes
have such a wealth of simplices. Note also that there does not seem to exist a
tight simplex of size one less than the upper bound in any of these spaces (see
Conjectures 4.134.13 and 5.105.10).

7. Algorithms and computational methods

We used computer assistance in several different aspects of this work. Our main
results involve two different computational steps: finding approximate solutions and
then rigorously proving existence of a nearby solution. We also require a method for
computing with real algebraic numbers for Theorem 6.86.8, and we must discuss how
to compute stabilizers of simplices and estimate the dimensions of solution spaces.
This section describes the algorithms and programs used for each of these tasks.

7.1. Proof certificates. Only the rigorous proof component is needed to verify our
main theorems. Therefore, for ease of verification, we provide PARI/GP code that
gives a self-contained proof of existence for each case. We chose PARI because it is
freely available and has support for multivariate polynomials and arbitrary-precision
rational numbers [P13P13]. Our code is relatively simple and straightforward to adapt
to other computer algebra systems.

The existence proofs rely on Theorem 3.13.1 via Corollary 3.43.4. In particular, we
use the `∞ norm on the domain and codomain and we apply Lemma 3.33.3 to bound
the variation of the Jacobian over the cube of radius ε. To check the hypotheses
of Corollary 3.43.4, we need to choose ε > 0, the starting point x0, and a matrix T
and then compute the operator norms of T and Df(x0) ◦ T − idRn . We provide
input files that specify our choices of x0, presented using rational numbers with
denominator 250, as well as the constraint function f . We then compute T as
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Table 7.1. Files for proof certificates.

rigorous proof.gp run all proofs.gp

hp general.gp hp2 12.gp hp2 13.gp hp2 15.gp

op2 general.gp op2 24.gp op2 25.gp op2 27.gp

grass general.gp grass2 5 11.gp

projective data.txt grass data.txt

described later in this section. Computing operator norms is easy, because the
`∞ → `∞ operator norm of a matrix is just the maximum of the `1 norms of its
rows. (This is one of our primary reasons for choosing the `∞ norm; for many
choices of norms, approximating operator norms of matrices is NP-hard [HO10HO10].)
We always use ε = 10−9, so that the conclusion of Corollary 3.43.4 is that there is an
exact solution, each of whose coordinates differs from our starting point by less than
10−9. In other words, the error is less than one nanounit.

These calculations are organized into fourteen files, enumerated in Table 7.17.1. All
of these files are available by downloading the source files for this paper from the
arXiv.org e-print archive. The file rigorous proof.gp implements Corollary 3.43.4,
and run all proofs.gp then proves our existence results using the remaining files
for input. The next ten files in Table 7.17.1 describe the constraints in each of
our applications (Propositions 4.14.1, 4.64.6, 4.84.8, 4.114.11, 5.15.1, 5.35.3, 5.55.5, 5.85.8, 6.36.3, and 6.56.5,
respectively). Finally, the last two files specify the starting points, i.e., explicit
numerical approximations for the simplices.

The translation from mathematics to computer algebra code is straightforward,
with just a few issues to address. One is that in the cases with cyclic symmetry,
some variables are constrained to be equal to others (for example, the coordinates
of xm+i are a cyclic shift of those of xi in Proposition 4.64.6).66 Our data files contain
all the points, but in the proofs we eliminate these redundant variables for the sake
of efficiency. For example, projective data.txt specifies 12 points in HP2, and
hp2 12.gp ignores all but the first four of them.

Another issue is that in three cases (Propositions 4.114.11, 5.85.8, and 6.56.5) we require
certain quantities to be close to 1. For example, in Proposition 4.114.11 we need∣∣|xi|4 − 1

∣∣ to be at most 10−6 for each i. This could easily be checked by direct

computation using the 10−9 bound for distance from the starting point, but it is
simpler to use the following trick. For each i, we add a new variable vi, add a
new constraint vi = |xi|4, and initialize vi to be 1 at the starting point. Then
we can conclude that

∣∣|xi|4 − 1
∣∣ < 10−9 in the exact solution with no additional

computation.
All that remains is to describe how we compute the approximate right inverse

T for use in Theorem 3.13.1. Let J be the Jacobian Df(x0), which by assumption
has full row rank. A natural choice for T would be the least-squares right inverse
J t(JJ t)−1 of J , but inverting matrices using exact rational arithmetic is slow and
the denominators become large. To save time, we approximate J t(JJ t)−1 using
floating-point arithmetic and obtain T by rounding it to a rational matrix with

6Here and in the next paragraph, xi is not to be confused with the starting point x0.
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denominator 250. Once we have T , the proof is then carried out using only exact
rational arithmetic and is therefore completely rigorous.

The use of floating-point arithmetic to obtain T raises one concern about repro-
ducibility. Floating-point error depends delicately on how a computation is carried
out, so using a different computer algebra system (or even a different version of
PARI/GP) might give a slightly different matrix T , which could in principle prevent
the proof from being verified. To guarantee reproducibility, we have analyzed how
close an approximation to J t(JJ t)−1 is needed to make the proof work: in each
of our existence proofs, every T satisfying

∣∣∣∣T − J t(JJ t)−1∣∣∣∣ < 10−2 works. Any
floating-point computation to produce T will meet this undemanding bound if the
working precision is high enough, and we have found the default PARI precision to
be more than sufficient.

To check this bound of 10−2, first suppose we have some matrix T that works in
Corollary 3.43.4. Examining the slack in the corollary’s hypotheses gives an explicit
bound

δ0 =
1− ||T || · |f(x0)|/ε− ||JT − In|| − ε |f |d(d− 1)ηd−2||T ||

||J ||+ ε |f |d(d− 1)ηd−2 + |f(x0)|/ε
such that we can replace T with an arbitrary T ′ satisfying ||T ′ − T || < δ0. Now
every T ′ satisfying ∣∣∣∣T ′ − J t(JJ t)−1∣∣∣∣ < δ

works as long as δ ≤ δ0 −
∣∣∣∣T − J t(JJ t)−1∣∣∣∣. We concluded that δ = 10−2 works by

examining all of our cases and applying the following lemma to bound the quantity∣∣∣∣T − J t(JJ t)−1∣∣∣∣ from above.

Lemma 7.1. Suppose J ∈ Rn×m and T ∈ Rm×n, and let || · || denote the operator
norm with respect to some choice of norms on Rn and Rm. If ||In − T tTJJ t|| < 1,
then J has full row rank and∣∣∣∣T − J t(JJ t)−1∣∣∣∣ ≤ ||TJJ t − J t|| · ||T tT ||

1− ||In − T tTJJ t||
.

Note that this bound is reasonably natural: if T = J t(JJ t)−1, then TJJ t = J t

and T tTJJ t = In, so the bound vanishes.

Proof. For all A,B ∈ Rn×n with ||In −AB|| < 1, B is invertible and∣∣∣∣B−1∣∣∣∣ ≤ ||A||
1− ||In −AB||

,

because we can take

B−1 =
∑
i≥0

(In −AB)iA.

Setting A = T tT and B = JJ t shows that JJ t is invertible (so J has full row rank)
and ∣∣∣∣(JJ t)−1∣∣∣∣ ≤ ||T tT ||

1− ||In − T tTJJ t||
Now combining this estimate with∣∣∣∣T − J t(JJ t)−1∣∣∣∣ ≤ ||TJJ t − J t|| · ∣∣∣∣(JJ t)−1∣∣∣∣
completes the proof. �
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Finally, we note in passing that the implementation of our proof techniques
in rigorous proof.gp is general enough to apply to a range of problems. For
example, we have used it to reproduce the results of [CW06CW06] and to prove some
of the conjectures in [HS96HS96], such as the existence of a 26-point 6-design in S2.
(Handling all of the conjectures in [HS96HS96] would require additional ideas, perhaps
along the lines of the special-case arguments in §4.24.2 and §4.34.3.)

7.2. Finding approximate solutions. To find approximate solutions we used a
new computer package called QNewton, which was written by the last named
author and can be obtained from him upon request. QNewton consists of a C++

library with a Python front end and is designed to find solutions to polynomial
equations over real algebras. Furthermore, QNewton can rigorously prove existence
of solutions using Theorem 3.13.1.

We have chosen to use both QNewton and PARI/GP because they have
different advantages: the PARI/GP code is shorter and easier to check or adapt to
other computer algebra systems, while QNewton provides a flexible, integrated
environment for both computing approximate solutions and proving existence.

After we specify the polynomials and constraints for the problem and an initial
point, QNewton attempts to find a solution using a damped Newton’s method
algorithm. Newton’s method converges rapidly in a neighborhood of a solution, but
it is ill-behaved away from solutions; thus we damp the steps so that no coordinate
changes in a single step by more than a specified upper bound.

Because the codes we seek are energy minimizers, another approach to find them
would have been gradient descent. In practice, we have found that gradient descent
is much slower than Newton’s method.

In our computations, we used random Gaussian variables for the initial points
and a maximum step size of 0.1. Because our variables represent unit vectors, the
step size is approximately one order of magnitude less than the natural scale. By
using this approach we were able to find a solution in all cases in which we think
there should exist one, using just a few different random starting positions. In
most cases we found a solution on the first try. These approximate calculations use
double-precision floating-point arithmetic, so we can only expect convergence up to
an error of approximately 10−15. In all cases this was more than sufficient for our
goals of rigorous proof.

Suppose that, as in Theorem 3.13.1, we are solving for a zero of a function f : Rm →
Rn. Newton’s method calls for taking repeatedly taking steps ∆x satisfying Df(x) ·
∆x = −f(x). In particular, we must repeatedly solve linear systems. When m > n
the system is underdetermined. Also, Df(x) may fail to be surjective. Hence we
need a linear solver tolerant of such problems. QNewton uses a least-squares solver
that treats small singular values of Df(x) as zero; specifically, it uses the dgelsd
function in LAPACK [AB+99AB+99]. By using such a solver we can handle cases with
redundant constraints. This was particularly useful when we were first determining
a minimal set of constraints for our problems.

QNewton has native support for multiplication in R, C, H, and O. Also, it
uses automatic (reverse) differentiation to compute the Jacobian of the constraint
function. These two features substantially increase its performance.

The QNewton package also has a mechanism for computer-assisted proof using
Theorem 3.13.1. Like the proofs discussed in the previous section, it uses the `∞ norm
on both domain and codomain. However, unlike those proofs, QNewton does not
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use rational arithmetic, nor does it use Lemma 3.33.3 to control the variation of the
Jacobian. Instead it uses interval arithmetic.

Interval arithmetic is a standard tool in numerical analysis to control the errors
inherent in floating-point computations. The principle is simple: instead of rounding
numbers so that they are exactly representable in the computer, we work with
intervals that are guaranteed to contain the correct value. For instance, consider
a hypothetical computer capable of storing 4 decimal digits of precision. Using
floating-point arithmetic, π would best be represented as 3.142. Using this, if
we computed 2 · π then we would get 6.284, which is obviously not correct. By
contrast, interval arithmetic on the same computer would represent π as the interval
[3.141, 3.142]. Then 2 · π would be represented by the interval [6.282, 6.284], which
does contain the exact value.

It is clear that balls with respect to the `∞ norm can be naturally represented
using interval arithmetic. Thus, in the notation of Theorem 3.13.1, for each entry of
the Jacobian matrix we can easily compute an interval that contains this entry
of Df(x) for every x ∈ B(x0, ε). We then compute an interval guaranteed to
contain ||Df(x) ◦ T − idRn || for all such x, and an interval guaranteed to contain
1− ||T || · |f(x0)|/ε. If the upper bound of the first interval is less than the lower
bound of the second interval, then we are assured that Theorem 3.13.1 applies.

QNewton uses the Mpfi library to provide support for interval arithmetic
[RR05RR05]. That in turn relies on Mpfr, a library for multiple-precision floating-point
arithmetic [FH+07FH+07]. One of the main problems with interval arithmetic is that
the size of the intervals can grow exponentially with the number of arithmetic
operations; this problem can be ameliorated by increasing the precision of the
underlying floating-point numbers. It was not an issue in our applications, though.

Finally, we remark upon the computation of the matrix T . It is supposed to be
approximately a right inverse of Df(x0), but otherwise we are free in choosing it.
In QNewton, we compute T much as in the PARI code. First we compute the
matrix Df(x0) approximately, using floating-point arithmetic. Then we find its
pseudoinverse (i.e., the least-squares right inverse), again using inexact floating-point
arithmetic. Finally, we take the result and replace it with intervals of width 0. This
approach is fast and, since T need not be the exact pseudoinverse, still gives rigorous
results. It is possible to compute Df(x0) in interval arithmetic and then compute
the pseudoinverse in the same way; this is a bad idea, though, because inverting a
matrix in interval arithmetic can result in very large intervals.

7.3. Finding stabilizers. In all but one case, namely 5-point simplices in OP2, our
reported local dimension for the moduli space of tight simplices has the dimension of
the full symmetry group deducted. That is valid when each simplex in a neighborhood
of the point under consideration has finite (i.e., zero-dimensional) stabilizer. This
is an open condition and thus only needs to be checked at that single point. We
checked this condition by (i) finding a basis for the Lie algebra of the symmetry
group, (ii) applying each element of that basis to the points of the simplex to
produce tangent vectors, and (iii) verifying that the resulting vectors are linearly
independent. In the remainder of this subsection, we explain the calculations in
more detail.

The relevant symmetry groups are Sp(d)/{±1} for HPd−1 and F4 for OP2, which
have dimensions 2d2 + d and 52, respectively. Let K be H or O, as appropriate, and
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let g be the Lie algebra of the isometry group of KPd−1 (i.e., g = spd if K = H and
g = f4 if K = O).

The Lie algebra g acts on the space H(Kd) of Hermitian matrices. In fact, in
this representation it is generated by commutation with traceless skew-Hermitian
matrices and application of derivations of the underlying algebra H or O (see [B02B02]).
The Lie algebra of the stabilizer of the simplex annihilates the projection matrices
for the simplex. Thus, if the dimension of the g-orbit in H(Kd)N of an N -point
simplex is at least D, then the dimension of the stabilizer is at most dimR g−D.

It remains to compute a lower bound for the dimension of the g-orbit of the
simplex determined by unit vectors x1, . . . , xN ∈ Kd. However, we do not have
explicit vectors for the points in the simplex. Instead, we have approximations
x̃1, . . . , x̃N ∈ Kd. These vectors are ε-approximations under the `∞ norm with
respect to the standard real basis of Kd, where ε = 10−9 (see §7.17.1), and we will give
a lower bound that holds over the entire ε-neighborhood of (x̃1, . . . , x̃N ). When we
refer below to real entries of vectors and matrices, we will use the standard real
basis of K; thus, each entry over K comprises dimRK real entries.

Before applying g, we must convert the vectors xi to projection matrices. To
bound the approximation error, note that each real entry of xi is bounded by 1 in
absolute value (since xi is a unit vector), and thus each real entry of x̃i is bounded

by 1 + ε. It follows that the real entries of Π̃i := x̃ix̃
†
i approximate those of the true

projection matrices Πi := xix
†
i to within (2ε+ ε2) dimRK, because each entry over

K is just a product in K (i.e., each real entry is the sum of dimRK real products)
and

(7.1) |uv − ũṽ| ≤ |u− ũ| · |v|+ |ũ| · |v − ṽ|

for u, v, ũ, ṽ ∈ R.
To understand the action of g on Π1, . . . ,ΠN , we begin by choosing a basis of g.

For each basis element, applying it to each of Π1, . . . ,ΠN and then concatenating
the real entries of these N Hermitian matrices yields a single vector of dimension
k := Nd2 dimRK. The resulting vectors form a (dimR g) × k real matrix M , and
the rank of M is the dimension of the g-orbit. Of course, the difficulty is that all

we can compute is the approximation M̃ to M obtained from Π̃1, . . . , Π̃N . Each

entry of M̃ is within δ of the corresponding entry of M , where δ is (2ε+ ε2) dimRK
times the greatest `∞ → `∞ operator norm (with respect to the standard real basis
of H(Kd)) of any basis element of g.

Lemma 7.2. Let M and M̃ be m× k real matrices whose entries differ by at most

δ. Then the rank of M is at least the number of eigenvalues of M̃M̃ t that are greater

than mkδ
(
2 maxi,j

∣∣M̃ i,j

∣∣+ δ
)
.

Proof. One can check using (7.17.1) that the entries of MM t and M̃M̃ t differ by at

most γ := kδ
(
2 maxi,j

∣∣M̃ i,j

∣∣+ δ
)
. Let V be the span of the eigenvectors of M̃M̃ t

with eigenvalues greater than γm. For all v ∈ V with `2 norm |v|2 = 1, we have

vtM̃M̃ tv > γm.

On the other hand, |v|1 ≤
√
m by the Cauchy-Schwarz inequality. Using the

observation that

(7.2) |〈a, b〉| ≤ |a|1|b|∞
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for vectors a and b, it readily follows that∣∣(MM t −M̃M̃ t
)
v
∣∣
∞ ≤ γ

√
m.

Applying (7.27.2) once more, we obtain∣∣vt(MM t −M̃M̃ t
)
v
∣∣ ≤ γm

and hence

vtMM tv > 0.

We have shown that the restriction of MM t to V is positive definite. Therefore
rankM = rankMM t ≥ dimV , as desired. �

To apply this lemma, we simply compute the characteristic polynomial of M̃M̃ t.

Its roots are the eigenvalues of M̃M̃ t with multiplicity, and we apply Sturm’s

theorem to count those that are greater than mkδ
(
2 maxi,j

∣∣M̃ i,j

∣∣+ δ
)
. All of these

computations use exact rational arithmetic and thus yield a rigorous lower bound
for the rank of M , which is the dimension of the g-orbit of the simplex Π1, . . . ,ΠN .
In other words, they give a rigorous upper bound for the dimension of the stabilizer.

We have implemented these calculations in PARI/GP, and the code can be
obtained as described in §7.17.1. The file apply lie basis.gp sets up the machinery,
and stabilizers.gp applies it to show that all of the projective simplices we
have found have zero-dimensional stabilizers, except for 5 points in OP2. In that
exceptional case, the stabilizer has dimension at most 3. This is good enough
because, translated into a dimension for the moduli space of simplices, that bound
says that the dimension is at most 0; hence the dimension must equal 0.

7.4. Real algebraic numbers. To verify equations involving algebraic numbers
of moderately high degree, we require a computational method for rigorously doing
basic arithmetic with such numbers. One possibility is to work in a single number
field, but even when each number we manipulate is of manageable degree, the
smallest field containing them all may have exponentially high degree. We will
instead use the standard approach of “isolating intervals,” which is implemented
in many modern computer algebra systems. There is no explicit support for the
isolating interval method in PARI/GP, so in order to present all of our computer
files in one system we provide a short implementation in addition to the pertinent
data files for our applications.

The technique is as follows. A real algebraic number α is represented by a triple
(p(x), `, u), where p(x) is a polynomial with integer coefficients such that p(α) = 0,
` and u are rational numbers such that α ∈ [`, u], and p(x) has a unique root in
the interval [`, u] (namely, α). We always take p(x) to be (a scalar multiple of)
the minimal polynomial of α, and we use Sturm sequences to rigorously count the
number of real roots in a given interval. Given representations (pα, `α, uα) and
(pβ , `β , uβ) for two real algebraic numbers α, β, we compute a representation for
α+ β by first taking the resultant, in the variable t, of the polynomials pα(t) and
pβ(x− t). This gives a polynomial in x for which α+ β is a root. We then factor
the resulting polynomial and count the number of roots for each irreducible factor
in the interval [`α + `β , uα + uβ ]. If there is more than one factor that has a root in
that interval or some factor has multiple roots, then we bisect the starting intervals
[`α, uα] and [`β , uβ ], using Sturm sequences for pα and pβ to choose the halves
containing α and β, respectively. After a finite number of steps we are left with
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a valid representation for α + β. Computing a representation for α · β proceeds
similarly, beginning with the resultant of pα(t) and tdeg pβpβ(x/t).

Using this system, we can now elucidate the proof of existence for 7- and 8-point
tight simplices in G(2, 4).

Proof of Theorem 6.86.8. We provide isolating interval representations for the entries
of the 4×4 projection matrices Π1, . . . ,ΠN for the N = 7 or 8 points in each simplex.
To verify the construction we need only perform a few calculations. First we need
to check that each provided matrix Π satisfies Π = Πt, Π2 = Π, and Tr Π = 2, as
together these conditions imply that Π is an orthogonal projection onto a plane.
Then we just need to verify that Tr ΠiΠj = (N − 2)/(N − 1) for i < j ≤ N . These
calculations are straightforward given our implementation of the isolating interval
method. �

The computer files can be obtained as described in §7.17.1. The file rtrip.gp

implements isolating intervals (“rtrip” refers to the representation of real algebraic
numbers using triples). Using this implementation, G2 4 verify.gp carries out the
computations with projection matrices taken from G2 4 data.txt.

7.5. Estimating dimensions. In Conjectures 4.104.10, 5.75.7, and 8.48.4, we conjecture the
dimension of certain solution spaces; here we describe the basis for those conjectures.

Suppose, as is the case in our examples, that we are studying the zero set Z
of some function f . Suppose moreover that we have a procedure for converging
to zeros of f , using, for example, Newton’s method with least-squares solving to
handle degeneracy. Thus we have the ability to generate points on Z, and we wish
to use that ability to calculate its dimension. This is a simple instance of manifold
learning, the problem of describing a manifold given sample points embedded in
some higher-dimensional space.

For our purposes we use following heuristic. Fix ε > 0. Starting with a solution
x0, we compute N nearby solutions x1, . . . , xN as follows. We first set x′i = x0 + εgi,
where gi is a vector of standard normal random variables, and then use our iterative
solver to find a zero xi of f near x′i. To first order in ε, the vectors (xi−x0)/|xi−x0|
are random (normalized) samples from the tangent space of Z at x0. We then form
the matrix whose rows are those N vectors and compute its singular values. There
should be d singular values of order approximately 1, where d is the dimension of Z.
The remaining singular values should be smaller by a factor of ε.

This procedure is certainly not rigorous, but in suitably nice cases, and with
proper choice of parameters, one can have a fair amount of confidence in the result.
In particular, N should be at least as large as the dimension d and ε should be
chosen small enough that, in a ball of radius ε, Z is well-approximated by its tangent
space. One pitfall to avoid is that, while ε needs to be small for the tangent space
approximation, it should also be large enough that the precision of the solver is
better than (approximately) ε2. If this is violated then we may erroneously identify
extra null vectors of Df(x0) as elements of the tangent space.

In our applications we used N = 1000 and ε = 10−3 and we required that
Newton’s method converge to within 10−12. It was usually easy to identify the
jump in singular values after the d corresponding to the tangent space. For instance,
Conjecture 4.104.10 says that, before accounting for overcounting and symmetries, we
conjecture a 66-dimensional space of 12-point tight simplices in HP2. This is based



OPTIMAL SIMPLICES AND CODES IN PROJECTIVE SPACES 47

on the following observation: when we ran the procedure just discussed, the first 66
singular values were all in the interval [2, 6], but the 67th was 0.04139564.

Remark 7.3. Based on similar computations, we conjecture that the moduli space
of SIC-POVMs, simplices of d2 points in CPd−1, has dimension 1 when d = 3 and
0 when d ≥ 4. In particular, we conjecture that, except in CP2, SIC-POVMs are
isolated. This is in accordance with the numerical results in [SG10SG10], although they
searched only for SIC-POVMs that are invariant under the Weyl-Heisenberg group.

8. Explicit constructions

With the exception of Theorems 6.76.7 and 6.86.8, all of the new results we have
presented so far involve computer-assisted proofs using Theorem 3.13.1. This allowed
us to sidestep explicit constructions, and it also gave local dimensions as a collateral
benefit. When an explicit construction is available, though, it can sometimes give
insight not proffered by a general existence theorem. We conclude the paper with a
few examples of this.

8.1. Two universal optima in SO(4). Most results in the literature concerning
universal optima in continuous spaces are set in two-point homogeneous spaces,
i.e., spheres and projective spaces. We have already seen another family of spaces
(namely, real Grassmannians) but there are many others.

Consider the special orthogonal group SO(n), endowed with the chordal distance

dc(U1, U2) = ||U1 − U2||F coming from the embedding SO(n) ↪→ Rn2

as n × n
matrices equipped with the Frobenius norm. This is not the Killing metric, but it
has the advantage that its square is a smooth function on SO(n) × SO(n). Note
that every element of SO(n) has norm n, so up to this scaling factor we have an

embedding into Sn
2−1.

By a universally optimal code in SO(n), we mean a code that minimizes energy
for every completely monotonic function of squared chordal distance (see [CK07CK07]).
In this section we present two particularly attractive universal optima in SO(4).

Theorem 8.1. There is a 17-point code in SO(4) with the following properties: it is
a regular simplex, it is universally optimal, and it has a transitive symmetry group.
Moreover, there is no larger regular simplex in SO(4).

Proof. Given a, b ∈ Z/17Z, define the rotation matrix

Ra,b =


cos(aθ) − sin(aθ) 0 0
sin(aθ) cos(aθ) 0 0

0 0 cos(bθ) − sin(bθ)
0 0 sin(bθ) cos(bθ)

 ,

where θ = 2π/17. For any a, b, c, d, not all zero, the map σa,b,c,d : SO(4)→ SO(4)
defined by X 7→ Ra,bXRc,d is an isometry of SO(4) of order 17. Set

X0 =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 ∈ SO(4)

and let {Xi = Ri1,3X0R
i
4,5} ∈ SO(4) be the orbit of X0 under σ1,3,4,5. This is a

17-point code which, by construction, has a transitive symmetry group. Moreover,
direct calculation shows that it forms a regular simplex.
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By virtue of the Euclidean embedding SO(4) ↪→ S15, there can be no regular
simplices of more than 17 points, and a 17-point regular simplex must be universally
optimal (indeed, it is even universally optimal as a code on the sphere). That proves
the remaining claims of the theorem. �

Theorem 8.2. There is a 32-point code in SO(4) with the following properties: it
is a subgroup, it is universally optimal, and it forms the vertices of a cross polytope
in S15.

Proof. The code consists of all matrices of the form
a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

 ,


0 a 0 0
b 0 0 0
0 0 0 c
0 0 d 0

 ,


0 0 a 0
0 0 0 b
c 0 0 0
0 d 0 0

 , or


0 0 0 a
0 0 b 0
0 c 0 0
d 0 0 0

 ,

where a, b, c, d = ±1 with an even number of −1’s. In other words, we use signed
permutation matrices in which the underlying permutation is either trivial or a
product of disjoint 2-cycles and the number of minus signs is even. It is not difficult
to check that this defines a subgroup of SO(4).

The supports of these four types of matrices are disjoint, so the corresponding
points in R16 are orthogonal. The inner product between two matrices of the same
type is simply the inner product of the vectors (a, b, c, d), which is 0 or ±4 because
of the even number of −1’s. Thus, the code forms a cross polytope in S15.

As in Theorem 8.18.1, universal optimality of C in SO(4) follows from universal
optimality as a subset of S15 (see [CK07CK07]). �

8.2. 39 points in OP2.

Theorem 8.3. There exists a tight code C of 39 points in OP2. It consists of 13
orthogonal triples such that, for any two points xi, xj in distinct triples, ρ(xi, xj) =√

2/3. In other words, if Π,Π′ are the projection matrices corresponding to two
distinct points in C, then 〈Π,Π′〉 equals 0 if the two points are in the same triple
and otherwise equals 1/3.

Proof. First we recall from [C74C74, p. 127] the standard construction of a 12-point
universal optimum in CP2: in terms of unit-length representatives, it consists of the
standard basis

(1, 0, 0), (0, 1, 0), (0, 0, 1)

together with the 9 points

(8.1)
1√
3

(1, ωa, ωb),

where ω = e2πi/3 and a, b = 0, 1, 2.
To construct the desired code, we will use the standard basis together with four

rotated copies of (8.18.1). More precisely, let {1, i, j, k} be the standard basis of H and
let ` be any one of the remaining four standard basis elements of O. We identify
ω ∈ C as an element of span{1, i} ⊂ O. Set n = j`. Then we define C ⊂ OP2 to be
the code obtained from the standard basis and the points

(8.2)
(1, ωa, ωb)/

√
3, (1, ωaj, ωb`)/

√
3,

(1, ωa`, ωbn)/
√

3, (1, ωan, ωbj)/
√

3
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for a, b = 0, 1, 2. Direct computation shows that this code has the desired distances.
In particular, the code splits into 13 distinguished triples of points: the standard
basis yields one such triple, and each of the four types of points in (8.28.2) yields three
triples according to the value of a+ b modulo 3.

The sums over C of the first and second harmonics

P
(7,3)
1 (2t− 1) = 12t− 4,

P
(7,3)
2 (2t− 1) = 91t2 − 65t+ 10

of OP2 both vanish; thus C is a 2-design. As it has only two inner products between
distinct points, and one of those is 0, it is tight [L92L92] and in fact universally optimal
[CK07CK07]. �

The code C in Theorem 8.38.3 is a system of 13 mutually unbiased bases. It follows
easily from linear programming bounds that it is the largest such system possible in
OP2.

This code is not unique: we can deform it to a four-dimensional family of tight
codes by replacing `, n, n, and j in the second line of (8.28.2) with ξ1`, ξ2n, ξ3n,
and ξ4j, where ξ1, . . . , ξ4 are complex numbers of absolute value 1. The group of
isometries of OP2 fixing the remaining 21 unchanged points is zero-dimensional (see
§7.37.3, for instance), so we have a four-dimensional family even modulo the action of
the isometry group F4 of OP2. We think the actual space of tight codes is much
larger, though. On the basis of numerical evidence (see §7.57.5), we conjecture the
following.

Conjecture 8.4. In a neighborhood of the code constructed in (8.28.2), the space of
tight 39-point codes, modulo the action of F4, is a manifold of dimension 24.

At present this remains just a conjecture, though, as we have been unable to
identify a nonsingular system of equations to which we can apply Theorem 3.13.1.

The existence of a code of this form was conjectured by Hoggar [H84aH84a, Table 2]
after classifying the permissible parameters for strongly regular graphs. Excepting
a hypothetical 26-point tight simplex, which we conjecture does not exist, there
are no remaining cases in which the existence of a tight code in OP2 is conjectured
but not resolved. In fact, based on computations of optimal quasicodes (two-point
correlation functions subject to linear programming bounds [CZ12CZ12]), we are confident
there are no other tight codes in OP2 with at most 104 points. We believe there are
no more of any size.
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