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Regular polytope — maximal symmetry by
reflections

Chiral polytope — maximal symmetry by
rotation, but not by reflections
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M. Conder, P. Dobcsanyi, |. Hubard, D.
Lemmans, R. Nedela, J. E. Schulte, SiranT.

Tucker, ... — various aspects I
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Conder, Hubard, Pisanski, 2008 — computer
based search for chiral 4- and 5-polytopes

DP, 2010 — recursive construction of chiral
n-polytopes

A. Breda, M. Conder, G. Cunningham, |. Hubard,

E. O'Rellly, E. Schulte, A. Weiss — other
approaches I
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finite almost simple groups

Conder, Hubard, O'Reuill
construction of chiral n-

y, Pellicer —
polytopes with symmetric

or alternating automorp

NISM groups
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Chiral n-polytopes from (n — 1)-polytopes

Schulte, Weiss, 1995 — every chiral d-polytope
with regular facets Is the facet of an infinite chiral

(d + 1)-polytope
Is every finite d-polytope with
regular facets the facet of a

FINITE chiral (d + 1)-polytope? I
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Automor phism groups

Theorem Givenagroup I’ = {0y,...,04_1)
satisfying (0;0;.1---0;)* = Id and the
Intersection condition, it is the automorphism
group of a unigue regular or chiral n-polytope

» P is regular if and only if there is an
automorphism

o1 01_1

g9 +— 0%02

O = Ok k>3 I
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» PR — Permutation representation
Embedding ¢ : I'(P) — 5,

» \ertexset — {1,...,n}
Generators oy, ...,04-1
# Arrows labeled i indicate the action of o;

Involutions 7; ;41 := 0,041 May replace o; or o,
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Open guestions

» Are there natural families of chiral polytopes
with one polytope of each rank?

» Are there “small” chiral n-polytopes?
# What is the smallest n-polytope for a given n?

» Are all orientably regular polytopes the facet
of a chiral polytope?
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