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Simplicial Depth

@ Given a set S of n points in RY, the simplicial depth of any
point p with respect to S is the number of open simplices

generated by points in S containing p. Denote this depthg(p)
or just depth(p).

@ We consider open rather than closed simplicial depth.
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Deepest points
@ Question: For fixed n and d, what are the possible values of
the (monochrome) depthg(p)?

@ In particular, consider for a given S the quantity:

g(S) = max depths(p)

@ Then g(S) is the maximum number of open simplices
generated by S containing a given point.
Tamon Stephen
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Bounds for Deepest Points
@ For a set S of n points in R? the bounds are!:

n3/27 + O(n?) < g(S) < n/24 + O(n?).
@ Barany showed that in dimension d:
1

T a0 < £(5) <

1
@ The upper bound is tight.

(d +1)!

nd+1+o(nd)
@ For fixed d, this gives the correct asymptotics in n. However
the gap in constants is large.

Tamon Stephen

(2010), Karasev (2012) and Kral', Mach and Serini (2012), ...

@ The lower bound has recently been improved by Gromov
!Boros and Fiiredi (1984), but see Bukh, Matousek-and Nivasch (2010) =
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Simplicial Depth Context

@ The simplicial depth of p is an gives an idea of how
representative p is of S. It is one of several measures studied
by statisticians of the “depth” of a data point relative to a
sample.

@ A point of maximum simplicial depth can be considered to be a
simplicial median. The simplicial median is a multidimensional
generalization of the median of a set of numbers.

@ The probability that p lies inside a random simplex chosen

depths(p)

from S is: ]

@ The algorithmic problem of finding a simplex containing p is
equivalent to the problem of finding a feasible basis in linear

programming.
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The Colourful Carathéodory Theorem
@ Theorem (Barany): if a point in R is in the convex hull of
(d + 1) colourful sets, then it can be expressed as a convex
combination of points of (d + 1) different colours.

."

@ This is a "Colourful” Carathéodory Theorem.
of the configuration.

@ We call the intersection of the (d + 1) colourful sets the core
hull of some colour(s).
Tamon Stephen
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@ Note that it is not sufficient to have the point in the convex
s



Colourful Simplicial Depth

@ Define a colourful configuration S to be a collection of d + 1
sets of points Sy, ..., Sy.1 in R

@ Define the colourful simplicial depth, denoted depthg(p), of a
point p with respect to a colourful configuration S to be the
number of open colourful simplices from S containing p.

@ Let 1(d) be the minimum colourful simplicial depth of a core
point in dimension d.
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Refining Colourful Carathéodory

@ In a typical (random) situation, we expect to find 0 in around
(d+1)d+1 . |
Tod simplices.

@ Theorem: There is a configuration of d 4+ 1 points in each of
d + 1 colours with 0 in the convex hull of each colour, but
with 0 contained in only d? + 1 colourful simplices.

e Conjecture: This is minimal, i.e. u(d) = d? + 1 for all d.

@ True for d =0,1,2,3,4.

e Example: A 2-dimensional colourful configuration which
contains 0 in only 5 simplices:
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Technical Reminders
@ The core of a colourful configuration is:

@ We make the following assumptions:

o We have d + 1 points of each colour.

e The points are in general position.
o We have 0 € intcoreS.

Tamon Stephen

@ By scaling the points, we assume without loss of generality
that they lie on the unit sphere S¢  RY.
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Colourful Simplicial Depth Context

@ The Colourful Carathéodory Theorem was originally proved by
Barany in the service of proving his lower bound for
monochrome simplicial depth. This proof can be trivially
modified to include a factor of u(d) in the lower bound.

@ There remains a probabilistic interpretation: the probability

that p lies in a simplex whose vertices are sampled
depths(p)

|S1] . |Saal]

@ Given a colourful configuration with 0 in the core, the
Colourful Linear Programming question of efficiently finding a
colourful set of (d 4 1) points containing 0 in their convex hull
is an interesting problem whose complexity remains poorly
understood.

independently from the S;'s is:

@ Recent research interest includes considering relaxed core
conditions.
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Tamon Stephen Colourful Simplices and Octahedral Systems 11



From Barany (1982), we can deduce p(d) > d + 1.
Deza et al. (2006) show p(d) > 2d and u(2) = 5.

Quadratic lower bounds were independently obtained in
Barany and Matousek (2007) and S. and Thomas (2008) using
somewhat different methods. Additionally, Barany and
Matousek showed that 1(3) = 10.

Deza, S. and Xie (2011): u(d) > [(d + 1)?/2].

A computational approach described in this talk (2013)
improves this by one in dimension 4.

Deza, Meunier, and Sarrabezolles have recently announced
proofs that u(d) > d —8and pu(4) = 17.

=} F = = E A
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Transversals
@ All these lower bounds depend on a key fact that we call the

Octahedron Lemma. Octahedra are built from transversals.

@ Fix a colour i. We call a set t of d points that contains

exactly one point from each S; other than S; an i-transversal.

kO._ P4 @
° o °g, ® color 2
9 ./
P2 ®

@ color3
./’

@ In the picture, po> and o, form a 2-transversal.
Tamon Stephen

Image: A. Deza
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Transversals and Antipodes
@ Transversals are generators of colourful cones.

® color 2

e color3

° antipode of g,

@ An i-transversal and a point of colour i form a colourful

simplex containing 0 if and only if the ray from 0 through the
antipode of the point passes through the affine hyperplane
generated by the transversal.

Tamon Stephen

Image: A. Deza
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@ We call any pair of disjoint /—transversals an i-octahedron.

o
o
=]

color 2

o @ @

color 3

@ These may or may not generate a geometric cross-polytope
(d-dimensional octahedron).

Image: A. Deza

[ [
Tamon Stephen

Colourful Simplices and Octahedral Systems

A



Octahedral Lemma
@ The Octahedron Lemma: Rays from 0 in general position
always intersect the same parity of facets made from
i—transversals of any fixed /- i~octahedron.

® color 2

e color 3

Tamon Stephen

® color 2

o color 3

Images: A. Deza
Colourful Simplices and Octahedral Systems
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From Geometry to Combinatorics

@ A colourful configuration defines a (d 4 1)-uniform hypergraph
onS = U,?IZOS,- by taking edges corresponding to the vertices
of 0 containing colourful simplices. Call these configuration
hypergraphs.

@ A strong version of the Colourful Carathéodory Theorem
implies that any configuration hypergraph H must satisfy
Property 1: Every vertex of a configuration hypergraph H
belongs to some edge of H.

@ The Octahedron Lemma gives that any configuration
hypergraph H must satisfy Property 2: For any octahedron
O, the parity of the set of edges using points from O and a
fixed point s; for the ith coordinate is the same for all choices
of s;.

e Call a hypergraph whose edges consist of one vertex from each
of (d + 1) sets and satisfying Properties 1 and 2 a covering

octahedral system.
[m] =P = =
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Small Octahedral Systems

@ One strategy for proving lower bounds is to show that there
are no small covering octahedral systems.

@ Let v(d) be the smallest size of a non-trivial covering
octahedral system. Then v(d) < u(d) < d? + 1. Conjecture:
v(d) = p(d) = d? + 1.

@ We begin by fixing a colour 0 and d + 1 disjoint O-transversals
tifori=0,...,d.
@ We include initial edge 00...0 and focus on three key quantities
of a candidate covering octahedral system:
e /, the number of edges containing tp. 700...0
o b the number of the octahedra formed from tg and t; for some
i=1,2,...,d that have odd parity. to * t;

o j the minimum number of O-transversals that form an edge
with any point of colour 0. 077..7

o = = ay
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@ It is clear that for any covering octahedral system with d? or
fewer edges we must have 1 < /7, b,j < d.

@ The number of edges in the system is at least j(d + 1).

@ We can get further inequalities by studying the tradeoffs
between edges required to satisfy the odd parity octahedra and
the even parity octahedra: (b+ ¢)(d + 1) — 2b¢ and
j+b>d+ 1

@ Finally, if we choose colour 0 so as to minimize ¢ but still have
> %, then we also have that the number of edges is at

least d? + 1.

@ These inequalities combine to give v(d) > [(d +1)?/2].

=] = = E = ay
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A Small Parity Table

@ For a given (d + 1)-uniform hypergraph, we can form a parity
table that lists the parity of each point of colour 0 with respect
to the octahedra generated by ty and each of the transversals
t1, to, ... tyg.

@ Example: With d = 4, this is the parity table for the
hypergraph with 3 edges: 00...0, 10...0, ..., 20...0, i.e.

(0, to), (1, to) and (2, to).

octahedron | 0% point - [0 1 2 3 4
to * t1 1 1 1 0 O
to * b 1 1 1 0 O
to * t3 1 1 1 0 O
to x ta 1 1 1 0 O

@ Only edges containing tg can change more than one entry in
this table.
=] = = E = ay
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Repairing the Small Parity Table

The choice of b dictates the required parities of the octahedra

tox t; for i=1,...,d. Without loss of generality, these can be 1
fori=0,1,...,b—1andOfori=b,b+1,...,d. Then given b,
the parity table corresponding to the hypergraph must have b
constant rows of ones, followed by d — b constant rows of zeros. In
the case where d = 4 and b = 2, this would be

octahedron | 0% point - [0 1 2 3 4
to * t1 1 1 1 1 1
to * tp 1 1 1 1 1
to * 13 0O 0 0 0 O
to x ta 0O 0 0 0 O

Thus, starting from the hypergraph consisting of the edges
00...0,10...0 and 20...0 (previous overhead), we need to add at
least 10 additional edges to get the proper parity table for b = 2.
=] = = E = ay
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Exclusion via Enumeration

@ We implemented an enumeration scheme to improve the
bound (slightly) for d = 4.

@ We start by fixing a choice of (¢, b, j).

@ Beginning with an empty hypergraph, add edges initially as
required by ¢, these are unique up to symmetry.

@ Then repair the parity table. At each stage we add one of the
15 edges that flip a single entry in the table.

@ Next we try to add edges using the fact that a covering
octahedral system with d? or fewer edges cannot have any
isolated edges that differ from all other edges of the
hypergraph in more than one vertex.

@ As a last resort we may have to add arbitrary edges.

o = = ay
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A Large Parity Table

@ An octahedral system needs to satisfy an enormous number of
parity conditions simultaneously.

e Call a set of (d + 1) points, one of each colour, a full
transversal.

@ Meunier and Deza (2013) reformulate Property 2 elegantly as
Property 2': For any pair of full transversals, the number of
edges from the octahedral system that are contained in the
pair must always be even.

@ For the edge Ty := to U {0} alone, there are d9*1 such parity
conditions that must be satisfied.
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Fixing a Large Parity Table

@ Consider now building an octahedral system beginning with Ty
and adding additional edges.

e With Ty alone, all d¥*! parity conditions fail.

@ Adding an edge will flip exactly d* parity conditions, where k
is the number of O's in the edge.

@ This immediately gives the fact that any octahedral system
with d? or fewer edges must not contain any isolated edges: if
To is isolated, the number of parity conditions fixed by adding
an edge is at most d9~1, thus we require at least d? additional
edges.

o (w1 =
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The Parity Cube

@ Rather than simply counting parity conditions, we should
exploit their natural structure.

@ Each full transversal is indexed by a point in
{1,2,...,d}9+1 C R+ We call this the parity cube.

@ The effect of adding edge e to the configuration is to flip all
parity conditions in the subspace defined by the equations
x; = ¢; for each non-zero entry in e.

So, for example with d = 4, including edge 12020 changes
exactly the d? parity conditions of points in the subspace
{x0=1,x1 =2,x3 = 2}.

The initial edge Ty changed the entire (d + 1)-dimensional
parity cube, while an edge disjoint from Ty will change a single
parity condition, i.e. a O-dimensional subspace.

o (w1 =
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Subspace Coverings

Thus the problem of fixing the parity conditions for Ty can be

viewed as a subspace covering problem (modulo 2). Required is to
cover (modulo 2) the points of the parity cube,

ie. {1,2,...,d}9, by non-trivial coordinate subspaces.

Image: HPC REU @ UMBC
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Subspace Coverings

@ For the cover to satisfy Property 1, we note that if edge e
contains point i > 1 of colour j, then the related subspace
satisfies x; = i. The 0 points of each colour are in Ty, so we
need merely to require that the subspace cover includes at
least one subspace contained in each of the d(d + 1)
hyperplanes x; =i fori=1,...,dand j =0,...,d.

@ Thus we would like to find such a (mod 2) subspace cover of
minimal size.

@ If we drop the (mod 2) condition, an inductive approach
should show that such a cover requires at least d? subspaces.

@ Unfortunately with the (mod 2) condition, there are subspace
covers of size d?/2 + O(d), which do not appear to to arise
from octahedral systems.
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Questions and Discussion

@ A gap remains even for d = 5.

@ Deza, Meunier and Sarrabezolles show that some covering
octahedral systems are not realizable via colourful

configurations. However, it remains possible that u(d) = v(d)
for all d.

@ Can we get lower bounds analogous to the lower bound for the
monochrome g(S) for the maximum colourful simplicial depth
of a point in colourful configuration? (The point is not
necessarily in the core.)

@ There is interesting recent progress on the monochrome depth
problem.

@ How to compute colourful simplicial depth efficiently?
@ The complexity of Colourful Linear Programming.
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Thank youl!
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