Polytopes derived from

cubic tessellations

Asia lvic Weiss
York University

including joint work with

Isabel Hubard, Mark Mixer, Alen Orbani¢ and Daniel Pellicer



TESSELLATIONS

A Euclidean tessellation is a collection of 7z - polytopes, called cells, which
cover E" and tile it in face-to-face manner.

A Euclidean tessellation 7 is said to be regular if its group of symmetries

(isometries preserving Z) is transitive on the flags of 2. The cells of a
regular tessellation are convex, isomorphic regular polytopes.



TESSELLATIONS

A Euclidean tessellation is a collection of 7z - polytopes, called cells, which
cover E" and tile it in face-to-face manner.

A Euclidean tessellation 7 is said to be regular if its group of symmetries

(isometries preserving Z%) is transitive on the flags of 2. The cells of a
regular tessellation are convex, isomorphic regular polytopes.

REGULAR TESSELLATIONS E":

{4,3”‘2,4} n=2

13,6} , 16,3;

{3,3,4,3} , {3,4,3,3}
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» Classification of equivelar abstract polytopes
of type {4,4} and {4,3,4}




The group of symmetries I'(7 ) of the tessellation Z is a Coxeter
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tessellations in dimension 2 and 3 so that (7 ) = [4,4] or [4,3,4].
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The group of symmetries I'(%) of the tessellation 7 is a Coxeter

group. In this talk we will mostly be concerned with cubic
tessellations in dimension 2 and 3 so that (%) = [4,4] or [4,3,4].

r@) =T X S

where T is the translation subgroup and S is the stabilizer of
origin (point group of %).

When G is a fixed-point free subgroup of (%) the quotient
T=2/G

Is called a (cubic) twistoid.
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faces of Z under the action of G.
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Twistoid 7 is an abstract polytope whose faces are orbits of
faces of % under the action of G.

Note: #/G = #/G’ < Gand G’ are conjugate in I'(%).

Sym(7):={¢el (@) | ¢'ape Gforalla eG}

Aut (7):=Sym(7)/ G



RANK 3

Fixed-point free crystallographic groups in Euclidean plane:

Generated by:

two independent translations two parallel glide reflections
(same translation vectors)
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Equivelar Toroids of type {4, 4}:
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Conjugacy classes
of vertex stabilizers
for {4,4}



Class 1: regular {4,4} maps on torus

(Coxeter 1948)

{4,4}(%0)(0,0), a>0 {4,4}(a,a)(a,_a), a>0



Class 2: chiral {4,4} maps on torus

(Coxeter 1948)

{4 ’ 4}(a,b)(—b,a)

a>b>0
RE 5]
\ | - “n‘\l




Class 24: vertex, edge and face transitive {4,4} maps on torus

(Sirén, Tucker, Watkins, 2001)
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Class 2q,: vertex and face transitive {4,4} maps on torus

(Hubard 2007; Duarte 2007)
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{4,4}(%0)(0’[?), a>b>0 {4’4}(a,b)(a,—b) , a>b>0



Class 4: vertex and face transitive {4,4} maps on torus

(Brehm, Khunel 2008; Hubard, Orbanic, Pellicer, Asia 2007)

a>b>0, cza-b, c=2a=4dc

andif bla,c,then ¢ 7 [+
b
{4’4}(61,]9)(0,0)



Equivelar maps of type {4,4} on Klein bottle

(Wilson 2006)
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RANK 4

Fixed-point free crystallographic groups in Euclidean space:

Six generated by orientation preserving isometries
(twists)

Four have orientation reversing generators
(glide reflections)

Platycosms are the corresponding 3-manifolds.
Classsification of twistoids on platycosms is mostly completed

(Hubard, Mixer, Orbanic, Pellicer, Asia) and partially published
In two papers.



Platycosm arising from the group generated by

a six-fold twist and a three-fold twist

with parallel axes and congruent translation component is the
only platycosm admitting no twistoids.




3-torus is the platycosm arising from the group G generated by
three independent translations:




3-torus is the platycosm arising from the group G generated by
three independent translations:

How can we place this fundamental region into a fixed cubical
lattice {4,3,4} so that G is a subgroup of the lattice symmetries?



Twistoid on 3-torus is commonly referred to as 3-toroid.

Conjugacy classes
of vertex stabilizers
of equivelar 3-toroids
of type {4, 3, 4}:




Class 1:

Theorem: Each regular rank 4 toroid belongs to one of the three
families.

(McMullen & Schulte, 2002)
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Theorem: There are no chiral toroids of rank > 3.
(McMullen & Schulte, 2002)
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Class 2:

Theorem: There are no chiral toroids of rank > 3.
(McMullen & Schulte, 2002)

Theorem: There are no rank 4 toroids with two flag orbits
(in Class 2).

Examples in Class 3:
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Projection of v | Class of Pr Generators of P Parameters Class of P
0 | (a,0,0),(0,a,0),(0,0,d) a,d>0,d#a 3
0 1 (a,a,0),(a, —a,0),(0,0,d) a,d >0
(v1 4 vg)/2 1 (a,0,0),(0,a,0),(a/2,a/2,d) a,d>0,d#a/2
(v1 4 vg)/2 1 (a,a,0),(a,—a,0),(a,0,d) a,d>0,d#a
0 202 (a,0,0),(0,b,0),(0,0,d) a>b>d>0 64
0 202 (a,b,0),(a,=b,0),(0,0,d) a>b>0,d>0
(v1 4 v9)/2 202 (a,0,0),(0,b,0).(a/2,b/2,d) a>b>2d>0
(v1 4 vg)/2 202 (a,b,0),(a,=b,0).(a,0,d) a>b>0,d>0d#ab
0 2 (a,a,0),(b,—b,0),(0,0,d) a>b>0,d>0 6g
0 2 (a,b,0),(b,a,0).0,0,d) a>b>0,d>0
(v1 4 v9)/2 2 (a,a,0),(b,=b,0).((a 4+b)/2,(a —b)/2.d) a>b>0,d>0
(v1 4 vg)/2 2 (a,b,0),(b,a,0).((a+b)/2, (a +b)/2.d) a>b>0,d>0
vy /2 1 (a,a,0),(a,—a,0).(a/2,a/2,d) a,d >0
vy /2 2 (a,a,0),(b,=b,0),(a/2,a/2,d) a>b>0,d>0
va/2 2 (a,a,0),(b,—b,0).,(b/2,—b/2,d) a>b>0,d>0
0 2 (a,b,0),(=b,a,0),(0,0,d) a>b>0,d>0 6o
(v1 +vg)/2 2 (a,b,0),(=b,a,0),((a —b)/2,(a +b)/2,d) a>b>0,d>0
0 4 (a,b,0), (c,0,0), (0,0,d) B 124
(v1 4 vg)/2 4 (a,b,0), (¢,0,0), ((a +¢)/2,b/2.d) -
vy /2 2 (a,b,0), (=b,a,0), (a/2,b/2,d) a>b>0,d>0
vy /2 202 (a,b,0), (a,=b,0), (a/2,b/2,d) a>b>0,d>0
vy /2 2 (a,b,0), (b,a,0), (a/2,b/2,d) a>b>0,d>0
vy /2 4 (a,b,0), (¢,0,0), (a/2,b/2,d) .
Kook

vg/2

(a.b,0), (¢,0,0), (¢/2,0,d)




Projection of v | Class of P, Generators of P Parameters Class of P
0 1 (a.0,=a),(0,a,-a),(c,c,c) a,c>0 4

(v1 +1v9)/3 1 (a,0,-a),(0,a,—a),(4F5, &5, '23“) a,c>0,3|(a+c) 4
0 1 (a,a,—2a),(2a, —a, —a),(c.c.c) a,c>0 4

(v1 +1vq)/3 1 (a.a,-2a),(2a,—a,—a),(a+c.c.—a+c) | a>b>0,¢>0 8
0 2 (a,b,—a=b),(=b,a+b,—a),(c.c,c) a>b>0c>0 8

(v1 +19)/3 2 (a,b,—a=b),(=b,a+b,—a), a>b>0c>0 8

(

a—b+ec a+2b+ec -2a—b+c )

3

3

3

3] (a+2b+0)




Didicosm is the platycosm arising from the group G generated
by

* two half-turn twists with parallel axes and congruent
translation component, and

* a twist whose axis does not intersect and is perpendicular to
the axes of the other two twists and has the translation
component equal to a vector between the other two axes:




|dentification of points of the boundary of the fundamental
region:




How can we place this fundamental region into a fixed cubical
lattice {4,3,4} so that G is a subgroup of the lattice symmetries?



Classification of cubic tessellations on didicosm according to
their automorphism groups:

Group | Size Generators Conditions Toroidal Covers

1 96 | 71,72, 73, X, X1, X25 X3, P a=2b=ceven,p=q=10 1

2 48 T1y T2y T35 Xy X1X25 2 a=26=codd,p=%,q=0 1

31 32 T1y Toy T3y Xs X1s P a=2b,ceven, (p=0orad¢Z) 1,3

39 32 1y T2, T3, Xs X25 ) ¢ =2b, aeven, (q=0, cevenor q = %, ¢ odd) 1,3

33 32 T1, T2, T3, X X35 P a=c, 2beven, p=q 1,3

6 16 T1, T2, T3, X ) a,2b € ZUV2Z 1,3,64.6p
61 16 T, Xs X1s a=20¢7ZU \/QZ, ¢ even 3
12 | 8 1y To, P a €27, 2b ¢ 2L 6p
123 T1, T3, P 2b € \/§Z, a §£ \/§Z 6B

12 1, X, P (a+2b) ¢ @Z\\/ﬁz 3,6p






