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TESSELLATIONS 
 
 
A Euclidean tessellation is a collection of n - polytopes, called cells, which 
cover En and tile it in face-to-face manner. 
 
A Euclidean tessellation U is said to be regular if its group of symmetries 
(isometries preserving U) is transitive on the flags of U. The cells of a  
regular tessellation are convex, isomorphic regular polytopes. 
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REGULAR TESSELLATIONS En : 
 
 

€ 

4,3n−2 ,4{ } , n ≥ 2 
 

€ 

3,6{ } , 6,3{ } 
 

€ 

3,3,4,3{ } , 3,4,3,3{ } 
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• Abstract polytope 

 
• Equivelar abstract polytope     ⇔     Schläfli symbol 

 
 
• Classification of equivelar abstract polytopes  
 of type {4,4} and {4,3,4} 

  



The group of symmetries Γ(U ) of the tessellation U is a Coxeter 
group. In this talk we will mostly be concerned with cubic 
tessellations in dimension 2 and 3 so that Γ(U ) = [4,4] or [4,3,4]. 
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The group of symmetries Γ(U) of the tessellation U is a Coxeter 
group. In this talk we will mostly be concerned with cubic 
tessellations in dimension 2 and 3 so that Γ(U) = [4,4] or [4,3,4]. 

Γ(U) ≅ T ⋊ S

where T is the translation subgroup and S is the stabilizer of 
origin (point group of U).  

When G is a fixed-point free subgroup of Γ(U) the quotient   

T   = U ⁄  G 

is called a (cubic) twistoid. 



 
Twistoid T    is an abstract polytope whose faces are orbits of 
faces of  U  under the action of G. 
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Twistoid T    is an abstract polytope whose faces are orbits of 
faces of  U under the action of G. 

Note: U ⁄G ≅ U ⁄G ’ ⇔  G and G ’ are conjugate in Γ(U). 

Sym (T   ) := { φ ∈ Γ(U) | φ-1α φ ∈  G for all α ∈ G }

Aut (T   ) := Sym (T   ) ⁄  G 



RANK 3 
 
Fixed-point free crystallographic groups in Euclidean plane: 

 
 

Generated by: 
 
two independent translations   two parallel glide reflections 
          (same translation vectors) 

 
 

 

 

 

 

 

 

 

 

 

 

  torus            Klein bottle  
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Equivelar Toroids of type {4, 4}: 

                
 
 
 
 
 
 
 
 
  
 

 
            R0  

 
  
 Conjugacy classes 
 of vertex stabilizers  
 for {4,4} 
  

 



Class 1: 
 
        

€ 

R1          

€ 

R1      
 
                 
                

€ 

R2 
         

€ 

R2          
           
 
 
        

€ 

4,4{ } a,0( ) 0,a( ), a > 0     

€ 

4,4{ } a,a( ) a,−a( ), a > 0 

 
Class 2: 
 
    
      

€ 

4,4{ } a,b( ) −b,a( ) 
  

€ 

a > b > 0    
         

€ 

R1R2

Class 1: regular {4,4} maps on torus 
 
(Coxeter 1948) 
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Class 2: 
 
    
      

€ 

4,4{ } a,b( ) −b,a( ) 
  

€ 

a > b > 0    
         

€ 

R1R2

Class 2: chiral {4,4} maps on torus 
 
(Coxeter 1948) 
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Class 21: 
 
 
      

€ 

R1 
           
                 

€ 

R1 
 
 
 
 
 
 
    
   

€ 

4,4{ } a,a( ) b,−b( ), a > b > 0  

€ 

4,4{ } a,b( ) b,a( ) , a > b > 0 

Class 21: vertex, edge and face transitive {4,4} maps on torus 
 
(Širán, Tucker, Watkins, 2001) 
 
 



 
Class 202: 
 
 
 
 
 
                  

€ 

R2 
        

€ 

R2 
 
 
 
    

€ 

4,4{ } a,0( ) 0,b( ), a > b > 0  

€ 

4,4{ } a,b( ) a,−b( ) , a > b > 0 

 

Class 202: vertex and face transitive {4,4} maps on torus 
 
(Hubard 2007; Duarte 2007) 
 
 
 
 
 
 
    



  
 
Class 4: vertex and face transitive {4,4} maps on torus 
 
(Brehm, Khünel  2008; Hubard, Orbanić, Pellicer, Asia 2007) 
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b |a,c , then 
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c
b  
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1± a2
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c
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€ 

4,4{ } a,b( ) c,0( ) 



{4, 4}4,2 {4, 4}*4,2 {4, 4}\6,2\ {4, 4}\7,2\

 
Equivelar maps of type {4,4} on Klein bottle 

 
(Wilson 2006) 

 
 
  



RANK 4 
 

Fixed-point free crystallographic groups in Euclidean space: 
 

   
  Six generated by orientation preserving isometries  
  (twists) 
 
 
  Four have orientation reversing generators  
  (glide reflections)  
 
 
Platycosms are the corresponding 3-manifolds.  
 
Classsification of twistoids on platycosms is mostly completed 
(Hubard, Mixer, Orbanić, Pellicer, Asia) and partially published 
in two papers. 
 



Platycosm arising from the group generated by  
 

a six-fold twist and a three-fold twist  
 

with parallel axes and congruent translation component is the 
only platycosm admitting no twistoids. 
  



3-torus is the platycosm arising from the group G generated by 
three independent translations: 
 
 
 
 
 
 
 
 
  



3-torus is the platycosm arising from the group G generated by 
three independent translations: 
 
 
 
 
 
 
 
 
 
 
 
 
How can we place this fundamental region into a fixed cubical 
lattice {4,3,4} so that G is a subgroup of the lattice symmetries?  



 
Twistoid on 3-torus is commonly referred to as 3-toroid. 
 
 
 
 
 
Conjugacy classes  
of vertex stabilizers 
of equivelar 3-toroids  
of type {4, 3, 4}: 
 



x

y

z

(a,a,a)

(2a,0,0)

(0,2a,0)z
y

x

(a,2a,a)(a,a,a)

(2a,0,0)

(o,a,a)

(a,-a,0)

y

x

z

Class 1: 
 
Theorem: Each regular rank 4 toroid belongs to one of the three 
families. 
(McMullen & Schulte, 2002)  
 
{4,3, 4} a,0,0( ) 0,a,0( ) 0,0,a( )  
 
 
 
 
 
 
 
 
 
 
 

{4,3, 4} 2a,0,0( ) 0,2a,0( ) a,a,a( )

{4,3, 4} a,a,0( ) a,−a,0( ) 0,a,a( )



A “closer” view of  {4,3, 4} 2a,0,0( ) 0,2a,0( ) a,a,a( )



Class 2: 
 
Theorem: There are no chiral toroids of rank > 3. 
(McMullen & Schulte, 2002)
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Class 2: 
 
Theorem: There are no chiral toroids of rank > 3. 
(McMullen & Schulte, 2002) 
 
Theorem: There are no rank 4 toroids with two flag orbits  
(in Class 2). 
 
 
 
Examples in Class 3: 
 
 
  



 



  
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Didicosm is the platycosm arising from the group G generated 
by  
 
• two half-turn twists with parallel axes and congruent 

translation component, and  
• a twist whose axis does not intersect and is perpendicular to 

the axes of the other two twists and has the translation 
component equal to a vector between the other two axes: 

  



 
Identification of points of the boundary of the fundamental 
region: 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
How can we place this fundamental region into a fixed cubical 
lattice {4,3,4} so that G is a subgroup of the lattice symmetries? 
  

b

c

a



 
 
Classification of cubic tessellations on didicosm according to 
their automorphism groups: 

 




