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Definitions

 Euclidean norm

 second order cone
— homogenization of a ball
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Definitions

 p-norm

 p-cone
— homogenization of a p-ball
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 p-norm geometry
— given by p ≥ 1

— p-balls are convex, so are the cones

— p = 1,∞ are polyhedral

— inclusion 

 Duality
— dual

— given by conjugate where

Facts

1,1 ≥∀⊆⊆ ∞ pCCC p

1x

2x

1=p 5.1=p 2=p 4=p 8=p

111

 ,*

=+

=

qp

CC qp

5



1 

,   ...,   ,

2,11,1

4
,1

2
,11

2
,11,22,11,1

≤+

≤+≤+

−−

−

p p
k

p
k

np
p

n
p

n
p pp

xx

xxxxxx



Facts

 First primitive
— recursive definition via “tower of variables”

 let 
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Applications

 Linear conic programming

 SOCP  –      is a product of second order cones
— superseeds  convex quadratic programming,

— has numerous applications, 
 sensor location,

 mean-variance investment portfolio optimization,

 robust linear programming, etc.

 p-cone programming –     
— has fewer known applications (?),

— may be used to shape distributions,
 radiotherapy planning
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Applications

 Radiotherapy planning basics

— choose “intensity” so that 
 tumor gets killed,

 healthy tissues are spared
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Applications

 Radiotherapy planning basics
— organ survival is ensured by “certain % of the organ 

receives no more than a certain dose”,
 e.g., no more than 30% of the liver receives 20Gy,

— equivalent to specifying distribution for a (pseudo) 
random variable,
 if compactly supported (true), equivalent to prescribing 

moments,

 p-moments can be described using p-norms
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Facts

 Solving p-cone programs
— interior-point methods

 using suitable “barriers”

— “efficient” approximation
 by better understood class of optimization models 
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“barrier”

 Solving p-cone programs
— interior-point methods and barriers

  

  
  

  

  

  

   solve by following “central path”

i.e., the set of solutions to  
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 Solving p-cone programs
— interior-point methods and barriers

  complexity of solving 

by following the solutions of

is driven by barrier parameter        

(length of a barrier gradient in a certain norm), 

with number of iterations 

Facts
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Facts

fθ

Special/polyhedral

Pathological / 
misunderstood ?
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 Solving p-cone programs
— interior-point methods and barriers

  reason for native barriers associated with 

being so different for 

is the number of real roots of
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Facts

 Solving p-cone programs
— interior-point methods

 using suitable “barriers”

— “efficient” approximation
 by better understood class of optimization models

o specifically Linear Programming (LP), 
o polyhedral approximation to         ?pC
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Definitions

 Euclidean norm

 second order cone
— homogenization of a ball
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Facts

 Solving p-cone programs
— “efficient” approximation of SOC

 naïve
o exponential number of inequalities
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Facts

 Solving p-cone programs
— “efficient” approximation of SOC

 simple
o using tower of variables, suffices to describe 3D cone,
o number of inequalities
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Facts

 Solving p-cone programs
— “efficient” approximation of SOC

 efficient (Ben-Tal, Nemirovski)
o using tower of variables, suffices to describe 3D cone,
o rely on rotational invariance to describe unit ball,
o number of inequalities
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Facts

 Solving p-cone programs
— “efficient” approximation of          ?

 cannot be extended in straightforward manner
o using tower of variables, suffices to describe 3D cone,
o rotational invariance is lost !

 for p = powers of 2, can build “cascading” construction
o use SOC to approximate epigraph of                ,
o number of inequalities

 for p = rational, becomes prohibitively expensive
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Facts

 Solving p-cone programs
— interior-point methods and barriers

— “efficient” approximation

p           Barrier LP 
approximation

native SOC

1 2n + 1 2n + 1 2n + 1

∞ 2n + 1 2n + 1 2n + 1
2 2 2 n  ln(1/ε) 
2k 4 (2k ) > 2n k n k ln(1/ε)

m / q 4n > 2n (m +q) (too large )
p           Barrier LP 

approximation

fθ
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“Greedy” approximation
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“Greedy” approximation

 The idea
— use approximating planes only when needed

 adapt to the curvature  

1x

2x

1=p 5.1=p 2=p 4=p 8=p
1=p

5.1=p
2=p 4=p

8=p

23



“Greedy” approximation

 The idea
— use approximating planes only when needed

 adapt to the curvature ,

 by coordinate symmetry suffices to consider first octant,

 by duality, p > 2 suffices,

 “tangent – locate – project”  
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“Greedy” approximation

 Lazy bound
— let the two points be

— intersecting

— boundary

— combining   
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“Greedy” approximation

 Tight bounds and complexity
— number of inequalities

 can establish upper and lower bound of the same order

— comparing to naïve equi-spaced scheme get

 for large p the difference will be large
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“Greedy” approximation

 One extension
— “greedy” error is strictly below ε due to projections,

— improve by targeting exact error
 “tangent/tangent – locate”
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“Greedy” approximation

 One extension
— “greedy” error is strictly below ε due to projections,

— improve by targeting exact error
 “tangent/tangent – locate”

— number of inequalities

 roughly 2 times less than “greedy”
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Facts

 Solving p-cone programs
— interior-point methods and barriers

— “efficient” approximation

p           Barrier LP 
approximation

native SOC

1 2n + 1 2n + 1 2n + 1

∞ 2n + 1 2n + 1 2n + 1
2 2 2 n  ln(1/ε) 
2k 4 (2k ) > 2n k n k ln(1/ε)

m / q 4n > 2n (m +q) (too large )
p           Barrier LP 

approximation

fθ
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Moving further
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Moving further

 Lessons from BTN 
— other geometric primitives

 reflect, 

 rotate, 

 fold onto

— only the boundary really matters!
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Moving further

 Lessons from BTN 
— other geometric primitives

 reflect, 

 rotate, 

 fold onto

— only the boundary really matters!
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Moving further

 Boundary curvature and more insights
— curvature = radius of inscribed circle,

— curvature = “steering” when driving at a const speed,

— increasing with arc-length for p > 2 (recall duality),

— octant may be folded “onto itself” , etc.
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Moving further

 Fitting with constant curvature
— constant curvature = Euclidean ball

 recall SOC has efficient polyhedral approximation,

 “jerk-and-lock” the steering wheel 
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Moving further

 Fitting with variable curvature
— SOC conic sections

 parabola, 

 ellipse, 

 hyperbola
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Moving further

 Fitting with variable curvature”
— SOC conic sections

 parabola, ellipse, hyperbola

— fit general quadratics
 instead of “jerk-and-lock” use smooth steering pattern …

p = 4

K: ε = 10-K # LP # ball # parabola # general 
quadratic

1 2 2 2 2

2 6 3 3 3

3 16 7 7 4

4 49 14 18 7

5 153 29 41 10

p = 4 36



Hopes and conclusions

 Despite p-norm not being rotationally-invariant,
believe that 
true polyhedral approximation complexity
is not far from that of SOC…

THANK YOU!

p.s.: looking for a PDF
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