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EXAMPLE: INTEGRABLE SYSTEMS
Potential Kadomtsev-Petviashvili (PKP) equation

3 1 3
U + EUxex oy ZUxxxx + ZSZUyy =0, §? = +1.



EXAMPLE: INTEGRABLE SYSTEMS
Potential Kadomtsev-Petviashvili (PKP) equation

3
Ut + 75 UxUxe + 7 U + Zszuyy =0, 2 = +1.

Admits an infinite dimensional algebra of distinguished
symmetries gpxp involving 5 arbitrary functions of time t.
(David, Kamran, Levi, Winternitz, Symmetry reduction for the

Kadomtsev-Petviashvili equation using a loop algebra, J. Math.
Phys. 27 (1986), 1225—-1237.)



PKP EQUATION

The symmetry algebra gpkp is spanned by the vector fields

1
X; 0 + gyf’a— + (1xf' — gs~2y2f“) 9 + (—1uf' + —x2f"

ot 3 ay '3 9 Ix 5 5
- 21732Xy2f’“ + 2j—sy“f’”’) gw

Yo = ggy - gszyg’gx -+ (—gszxyg” 4 881}/39”’) o

Zy= g+ (G~ 55 g

0 0
Wk_yk%, and U/_l%,

where f = f(t), g = g(t), h= h(t), k = k(t) and | = I(t) are
arbitrary smooth functions of t.



PKP EQUATION

Locally variational with the Lagrangian

1 1 1 3
L= — 5t Zuﬁ + gu;‘;X — gszu}z,.

But the PKP equation admits no Lagrangian that is invariant
under ngP!



PKP EQUATION

Locally variational with the Lagrangian

1 1 3
L= — 5t Zuﬁ + gu)z(x - gszuf,.

But the PKP equation admits no Lagrangian that is invariant
under ngP!

To what extent do these properties characterize the
PKP-equation?




EXAMPLE: VECTOR FIELD THEORIES

One-form A = A,(x') dx® on R™ satisfying
T2 = T3(x', Ap, Abiy, Abisips - - Abiyipi) =0, a@=1,2,....m.
SYMMETRIES
Sq: spatial translations
X' s x'+d, (d)eRr™
So>: Gauge transformations

Aa(x)) — Ax(x") + gqs(x ), o€ C®RM.

CONSERVATION LAWS
Cy: There are functions t;! = l‘/’(X’,Aa,Aa,/1,Aa,/1i2, o Agiipendy)
such that, foreachj=1,2,..., m,

Aq;T? = Di(t).
Co: The divergence of T2 vanishes identically,
Da Ta = O



VECTOR FIELD THEORIES

THEOREM (ANDERSON, P.)

Suppose that the differential operator T2 admits symmetries
Sy, S, and conservation laws Cy, Co. Then T2 arises from a
variational principle, T2 = E4(L) for some Lagrangian L, if
(i) m=2,and T2 is of third order;
(i) m> 3, and T2 is of second order;
(iii) the functions T2 are polynomials of degree at most min
the field variables A, and their derivatives.

NATURAL QUESTION: Can the Lagrangian L be chosen to be
invariant under [S1], [S2]?



The goal is to reduce these type of questions
into algebraic problems.




VARIATIONAL BICOMPLEX

Smooth fiber bundle

— E
M
Adapted coordinates
{(xV, X2, xM oGP uP)Y = (X ue)Y
such that

r(x', u®) = (x)).



A local section is a smooth mapping

c:UP M= E

such that
moo =id.
In adapted coordinates
1,2 m
o(x',xe, ..., x™)
1,2 m (1,2 m 1,2
=(x", xS X (T xs xR X



INFINITE JET BUNDLE OF SECTIONS

J>*(E)




INFINITE JET BUNDLE

Adapted coordinates @ —  locally

00 ~ i o o a a
JY(E) =~ {(x',u NN AR S N
Often write
o S
Uir sz ..xic = Yjsjp-rojc = U

where J = (ji, o, - - -, k), 1 < ji < m, is a multi-index.



COTANGENT BUNDLE OF J*°(E)

Horizontal forms: dx',dx?,..., dx™.
Contact forms: 0% = dug — ug ax.



COTANGENT BUNDLE OF J*°(E)

Horizontal forms: dx',dx?,..., dx™.
Contact forms: 0% = dug — ug ax.

The space of differential forms A*(J*°(E)) on J*°(E) splits into
a direct sum of spaces of horizontal degree r and vertical (or
contact) degree s:

N(JX(E)) = Y A"(J=(E)).

r,s>0
Here w € A"$(J*°(E)) is a finite sum of terms of the form

FOX U U u) O A A X NG A



HORIZONTAL AND VERTICAL DIFFERENTIALS

The horizontal connection generated by the total derivative
operators
0 0 0 0

D; = w0 + uj; T u’h/z o ua

i / o' h e o
ox’ oue ou
Jil 12

is flat =S



HORIZONTAL AND VERTICAL DIFFERENTIALS

The horizontal connection generated by the total derivative
operators

D 0 0 o O 0
i= axl+ i aua+uﬁ1ﬁ+ulh/23ua T
) M2
isflat —
The exterior derivative splits as
d=dy+ dy,

where

dy: Q" — Qs dy : Q" — QsH,



HORIZONTAL AND VERTICAL DIFFERENTIALS

dyf(x', u®

dvf(x', u®

m
=> Dif(x, L, ug)axd,
j=1

8f 3
= auﬁ XU uS) 0.
p=1K|>0 YY¥Kk



HORIZONTAL AND VERTICAL DIFFERENTIALS

m
apf(x', u” = Dif(x’ U )ax,
j=1
; 8f
dvf(x', u => U, UGy
’ B 9 I K
B=1|K|>0 aUK

d3=0, d2=0, dydy+dydy=0.
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/\m71,1 —_ /\m,1

dv

dy

dy



FUNCTIONAL FORMS
Define

o o — SR8 it |1 = 1),
o 0, otherwise.

Interior Euler operator F,: N5 — ANS=1 s> 1,

Iy 1+ 1IN, M
HOED I (A [C VCRP)

[J=0



FUNCTIONAL FORMS

Define 5 )
I I . _
Qlluf: 5a5j1 ---5jk , it =1]J|,
0, otherwise.

Interior Euler operator FC’M: NS 5 AHS—1 g > 1,
I+ 1|J
HOED I (A [C VCRP)
[J]>0
Integration-by-parts operator | : N™5 — NS g > 1,

I(w) = %9“ A F(w).

Spaces of functional s-forms F° = I(N"™%), s> 1.
Differentials dy = lody: FS — F5*'. Then 42 =0.



FREE VARIATIONAL BICOMPLEX

A A
dy dy
dy o/¥
0 > A0,2 > A1,2 >
A A
dy olV
dy dy
0 > AO.1 > Al >
A A
dy dy
ay ay
R > A0,0 > A1,0 >
A A
T* T*
d d
5 AO > Al ~
R > Ay > Ay >

L] L]
L] L]
L] L]
A A
dy dv
ay
AM—1,2 > AM.2 >
A A
dy dy
dy
AMm—1,1 > AM1 >
A A
dy dv
E
ay
Am71,0 —_ Am,O
A A
T T
d
m—1 m
Ny @ ———> AW

>
>

f1

dy

oy



EULER-LAGRANGE COMPLEX

» Columns are locally exact
» Interior rows are globally exact!

Horizontal homotopy operator

1 .
hf(w) = 5 > aby[6% A FY(Dj = w)),
11120

[/]+1



EULER-LAGRANGE COMPLEX

The edge complex

a a
R ; /\0,0 H /\1 ,0 H
a a 1 1) 6
H \ /\m—1 0 Df'/ /\m,O EV ]:1 7_‘; ]:2 v
iv

is called the Euler-Lagrange complex £*(J*°(E)).

Sy e



CANONICAL REPRESENTATIONS

w= Vi(x', ulf) (8, - v) e NP10,
A= L(x', ulkyy e A™,
A= Ay(x ufo A v e FT,
H = %Hgﬁ(x", ulko p 67
Then
A=dyw < L=DV
A=6yN = A,=E.),
H=0vA < Hhy=-00,+(-1)EL(Ap),

where E},(F) = X0 (") (=D)4(9YF).



COHOMOLOGY

Associated cohomology spaces:

kerdy: & — &1
H'(£*(J*(E))) = .
(EHED) imédy: &1 —¢&r

This complex is locally exact and its cohomology H*(E*(J>°(E))
is isomorphic with the de Rham cohomology of E ~ singular
cohomology of E.



GROUP ACTIONS

A Lie pseudo-group G consists a collection of local
diffeomorphisms on E satisfying

1. id € G;
2. If 4y, o € G, then 14 o (12)~" € G where defined;
3. There is ko, such that the pseudo-group jets

GK = {jfy | € G,z e dom ), k> ko,

form a smooth bundle.

4. Alocal diffeomorphism ¢ € G <= j§1/1 e Gk, k > k,, for
all z € dom .

EXAMPLE: Symmetry groups of differential equations, gauge
groups, . ...



The graph T, C E of a local section o of E — M is the set
[y = {o(x")| (x) € domo}.
Let ¢» € G. Define the transform -0 of o under v by
Fypo =1¥(To).
The prolonged action of G on J*°(E) is then defined by
pr

jeo 22 . (W-0)

oO— > Yo



A function F defined on a G-invariant open U/ C J*°(E) is called
a differential invariant of G if Fopr«y = F forall ¢ € G.

A k-form w € AX(U) is G invariant if (pr)*w = w for all ¢ € G.



The prolongation pr V of a local vector field V on E is defined
by

¢/ —— pro/



The prolongation pr V of a local vector field V on E is defined
by

&) ———>pro/

d

dt
V—mm>prV

A local vector field V on E is a G vector field, V € g, if the flow
dD)/ € G for all fixed t on some interval about 0.



Suppose that G consists of projectable transformations. Then
the actions of G and g both preserve the spaces A"*(J*°(E))
and commute with the horizontal and vertical differentials dy,
dy, and the integration-by-parts operator /.

—

The differentials dy, dy, éy map G- and g-invariant forms to G-
and g-invariant forms, respectively.



g=INVARIANT VARIATIONAL BICOMPLEX:

>
>

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
A A A A
dy dv dv dy
dy dy dy
o 70,2 o a12 . m—1,2 o am2
0 > AB > Ag > e oo /\g > Ag
A A A A
dy olV dy dy
adx dy adx
A0, R N m—1,1 o ami1
0 > /\g > /\g > o 0o /\g > Ag
A A A A
dy dy dy dy
lo/¥ o/¥ lo/¥
R > Ag,o > A;’O . eee /\g”*“’ _Hy /\g”’o
A A A A
T* T* T* T*
0 d d -




g-INVARIANT EULER-LAGRANGE COMPLEX &5 (J*°(E)):

d d
R /\870 H /\;,0 H

a - d, 4 1)
H /\gn 1,0 H /\m,O v ]_-1 v ]_—2

dy

Div Y E Y g

Associated cohomology spaces:

kerdy: £ — &5t

imoy: & ' =&

H (& (J7(E))) =



EXACTNESS OF THE INTERIOR HORIZONTAL RoOws

THEOREM

Let g be a pseudo-group of projectable transformations acting
on E — M, and let w' and # be g invariant horizontal frame and
zeroth order contact frame defined on some G-invariant open
set U C J*°(E) contained in an adapted coordinate system.
Then the interior rows of the g-invariant augmented variational
bicomplex restricted to U/ are exact,

H*(A\yS(U), du) = {0}, s> 1.




EXACTNESS OF THE INTERIOR HORIZONTAL RoOws

THEOREM

Let g be a pseudo-group of projectable transformations acting
on E — M, and let w' and # be g invariant horizontal frame and
zeroth order contact frame defined on some G-invariant open
set U C J*°(E) contained in an adapted coordinate system.
Then the interior rows of the g-invariant augmented variational
bicomplex restricted to U/ are exact,

H*(A\yS(U), du) = {0}, s> 1.

COROLLARY: Under the above hypothesis

H*(&5(U),dv) = H*(A,(U), d).



COMPUTATIONAL TECHNIQUES

EXPLICIT DESCRIPTION OF THE INVARIANT VARIATIONAL
BICOMPLEX.

Given a local cross section KK ¢ JX(E) to the action of GX on
JK(E), let

Hicw = {(9",2)| 2 € KW, g¥, Z" based at the same point},

and let
,U, HVC - Jk(E)7 :u'k(gkvzk) = gk' Zk'

Then, if the action is locally free, ;X will be a G-equivariant local
diffeomorphism with the action of G on ’H x given by

(g,Z)—( g,Z).



COMPUTATIONAL TECHNIQUES

Upshot: Locally one can find a complete set of differential
invariants {/,} and a coframe on &/ ¢ JX(E) consisting of {dl,}
and g-invariant 1-forms {9z} such that the algebra .A generated
by {93} is closed under d =

H; (U, d) = H*(A, d).

(Apply the g-equivariant homotopy /, — tl,, dl, — tdl,,
195—>195,0§t§1.)



GELFAND-FUKS COHOMOLOGY

Formal power series vector fields on R™:

Wm_{Za .| & e R[[x, m]]}.

Lie bracket [, |: Wmn x Wy — W,



GELFAND-FUKS COHOMOLOGY

Formal power series vector fields on R™:

Wm_{Za .| & e R[[x, m]]}.

Lie bracket [, |: Wmn x Wy — W,
2

Give W, a topology relative to the ideal m =< x', x2,

Ni(Wn): continuous alternating functionals on Wi,.

Ni(Wn) is generated by 5_/’:1j2“'jk’ where

o) okal
i /
5/1!2 /k( axl) axj1axj2...8xjk( )

XM >,



GELFAND-FUKS COHOMOLOGY

The differential dgr: AL(W) — ASH (W) is induced by Lie
bracket of vector fields so that

dero(X, Y) = —w([X, Y]),  we A (Wp).

2. =0



GELFAND-FUKS COHOMOLOGY

The differential dgr: AL(W) — ASH (W) is induced by Lie
bracket of vector fields so that

dero(X, Y) = —w([X, Y]),  we A (Wp).
az. = 0!
Let go C g C Wy, be subalgebras. Define

Ne(8) = No(Wm)jg,
N3(8,80) = {w € Ay(9) | X = w =0,
X o dgrw =0, forall X € go}.

The Gelfand-Fuks cohomology Hgr(g, g0) of g relative to g, is
the cohomology of the complex (A%(g, 8o), dar)-



EVALUATION MAPPING
Pick 0> € J>(E).
For a given infinitesimal transformation group g acting on E, let
go ={X € g[prX(c>) = 0}.
Define p: A3(J(E)) — N5(, 80) by

p(W)(Xi1,..., Xr) = (—=1) w(prXi,...,pr X;)(c™).



EVALUATION MAPPING
Pick 0> € J>(E).
For a given infinitesimal transformation group g acting on E, let
go = {X € g|prX(c>) = 0}.
Define p: A3(J(E)) — N5(, 80) by
pw)(Xa, ..., X)) = (=1) w(pr Xi,....pr X;)(c™).

Then p is a cochain mapping, that is, it commutes with the
application of d and ds-, and thus induces a mapping

P HY (N (S (E)), d) — Hie(g, 80).

Goal is to show that 5 is an isomorphism (moving frames!).



EQUIVARIANT DEFORMATIONS

Construct a submanifold P> c & c J*°(E) such that
1. prg acts transitively on P>, and

2. P is pr g-equivariant strong deformation retract of ¢/, that
is, there is a smooth map H: U x [0,1] — U such that

H(c%,0) = o, forall o> e U,
H(c*>,1) € P, forall o> e U,
H(c>,t) =0, forall (c>°,t) € P> x [0, 1],

(Ht)+(pr Vigee) = Pr Vip(oo,r), forall V e g,
(o™, t) eU x [0,1].



EQUIVARIANT DEFORMATIONS
Under these circumstances the inclusion map
L P —=U
and the evaluation map
p: N (P*) = N8, 80)

induce isomorphisms in cohomology.



PKP EQUATION AGAIN

The symmetry algebra gpkp of the PKP equation

Utk + = Ut + U + 8201y = 0
tx 2 x Uxx 4 XXXX 4 yy — Y-

is spanned by the vector fields

+ (—%Uf' + %Xzf” - %szxyzf’” + %y“f””) %,
Yo= g%y - %32}’9/% = (—gszxyg” + 8%y3g/”) %7
2= higs + (A - 52 o
Wk:}/k%, and U,:/%7

where f = f(t), g = g(t), h= h(t), k = k(t) and | = I(t) are
arbitrary smooth functions of t.



PKP equation

Now E = {(t, x,y,u)} — {(t, x,y)}. The PKP source form

3 3
Apxp = (Utx + EUXUXX + Uxxxx + 432Uyy> O A diENdx Ady

generates non-trivial cohomology in H*(&;p, (J*(E)))!



PKP equation

Now E = {(t, x,y,u)} — {(t, x,y)}. The PKP source form

3 3
EUXUXX + Uxxxx + 432Uyy> O A diENdx Ady

Apxp = (Utx +

generates non-trivial cohomology in H*(&;p, (J*(E)))!

The characterization problem of the PKP-equation by its
symmetry algebra amounts to the computation of H*( EqpipU))-

For a suitable &/ C J>(U), H*(&;,, .(U)) can be computed by an

9PKP
explicit description of differential invariants and an invariant

coframe arising from the moving frames construction.



The Gelfand-Fuks complex for gpxp admits a basis o, 3", 4",

v, 9", n=0,1,2,..., of invariant forms so that
n ~(n k n—k+1
da" = ; (k a N ,

dﬁn _ n {Ock /\ankﬂ _ gakﬁ /\ﬂnfk}’
k 3

d,yn _ <Z> {Ock /\,ynfkﬂ _ %O{kH /\’Vnik S ﬁ /\ﬁn k+1}
( 4 _
Y



The Gelfand-Fuks complex for gpxp admits a basis o, 3", 4",

v, 9", n=0,1,2,..., of invariant forms so that
n
da" = Z (n) X A"
k=0 k
“(n 2
dﬁn _ (k> {Ock A ankﬂ _ §O¢k+1 A ﬂnfk}’
k=0
n
d,yn _ Z <Z> {Ock /\,ynfkﬂ _ %O{kH A,yn—k S ﬁ /\Bn k+1}
k=0
n+1
du" = (n+ 1>{ak/\vn—k+1 4 S2(Bk+1 A Ak
k
k=0
_ 25 /\’Yn k+2)}
n
av" = (Z) AN T A9"K
k=0

- 2 _
+ﬁk/\vn k+§7k/\,yn k+1}.

The complex splits into a direct sum of simultaneous
eigenspaces of 2 Lie derivative operators.



PKP EQUATION

Let A be a non-vanishing differential function on some open set
U C J*(E) satisfying
oA _

1
pr X:(A) + §Af’(t) =0, i 0, for every smooth f(t),

and let B be a differential function on ¢/ satisfying

0B

2
pr Xf(B)+§yA‘1 f'(t) =0, 3y = 0, for every smooth f(t).



PKP EQUATION

Let A be a non-vanishing differential function on some open set
U C J*(E) satisfying

pr Xs(A) + %Af’(t) =0, g’;‘ =0, forevery smooth f(t),

and let B be a differential function on ¢/ satisfying

B
pr Xf(B)ngyA‘1 f'(t) =0, gy =0, for every smooth f(t).
For example, one can choose
A= (uxn)n% and B= —gszuany(uxn)*%, n>3,

onU = {uyn > 0}.



PKP EQUATION

THEOREM
Suppose that differential functions A and B, defined on an open
U C J*(E), are chosen as above. Then the dimensions of the

cohomology spaces H'(&;,,.(U),dv) are

ri1 2 3 4 5 6 7 >8
dm|{0 1 1 3 3 2 3 O




REPRESENTATIVES OF THE COHOMOLOGY CLASSES
Let {a®, 39,19} be the gpxp invariant horizontal frame defined
by
o = Adt, % = Ady + ABdt,
A% = Adx — §s2A23dy + A3Cadt,

where 4 ]
__v -2 1 2Rp2
C= 2UXA SSB’

and let K be the gpxp differential invariant

3 3
K = (Uy + Zszuyy + éuXuXX)A‘S.



REPRESENTATIVES OF THE COHOMOLOGY CLASSES

Let AT, A2 € &} (1) be the source forms

Az = UXXXX dt VAN dX AN dy VAN dU,

and let A® € & () be the source form which is the

Euler-Lagrange expression

A% = E(BKa® A B2 AAD).



REPRESENTATIVES OF THE COHOMOLOGY CLASSES

Let AT, A2 € &} (1) be the source forms

Al = (U + guxuxx + %szuyy) dt A dx A dy A du,

Az = UXXXX dt VAN dX AN dy VAN dU,

and let A® € & () be the source form which is the

Euler-Lagrange expression
A% = E(BKa® A B2 AAD).
Then H*(EX(U),0y) =< AT, A2 A3 >,

Note that the PKP source form is the sum Apxp = A + AZ.



COROLLARY:

Let A € Eg"PKP( ) be a gpkp invariant source form that is the
Euler-Lagrange expression of some Lagrangian 3-form
A € £3(U). Then there are constants ¢y, ¢, ¢ and a

gpkp-invariant Lagrangian 3-form \g € ngp(U) such that

A=A + A% + c3A% + E()).




VECTOR FIELD THEORIES
Here E = T*R™ = {(x', A})} — {(x")}.
Now the infinitesimal transformation group g is spanned by

0 0

Ti = W’ V<z> = qb”aT\,-’

where ¢ is an arbitrary smooth function on R™.

Need to compute H™ (€7 (J>(T*R™)))!



VECTOR FIELD THEORIES
Here E = T*R™ = {(x', A})} — {(x")}.
Now the infinitesimal transformation group g is spanned by

0 0

Ti = W’ V<z> = qb”aT\,-’

where ¢ is an arbitrary smooth function on R™.
Need to compute H™ (€7 (J>(T*R™)))!

The standard horizontal homotopy operator for the free
variational bicomplex commutes with the action of g —

H (N (J2(E)), du, ) = {0},  s>1.

So it suffices to compute H*(A;(J*°(E)), d).



VECTOR FIELD THEORIES
Parametrize J>°(T*R™) by
(X', Aa, Aabr)s Fabys Alabiby)s Faiby.ba)s Aabibobs)s Fa(bybabs)s - - -)s
where Fap = Asp — Ap.a-

Now the variables Fyp, p,...5,) are invariant under the action of g
=

P ={0c%* e J®(T'R")|Fj(c>) =0, Fijn(c>)=0,...}

is a g-equivariant strong deformation retract of J>°(7*M) on
which g acts transitively.



VECTOR FIELD THEORIES
In conclusion,
H*(E5(J=(T*M))) = Hge(9),

where the Lie algebra of formal vector fields g is spanned by
the vector fields T; and

Vi = xUixle . xle—1gh) gl = 2



VECTOR FIELD THEORIES

A basis for H*(&;(J>(T*M))) is given by

dx" A Adx A F e NO(UX(T*M)),  k+2l=r,

ax" A+ A dxk A FUA (dyA)S € FS(U(T*M)), k+2/+s=m.
(A= Adx', F = Fdx' A dxl.)

Generators for H™(&:(J>(T*M)))

Al = gyt A dx2 A A dxRAFIAdyA, k+2l=m—1,

dim H™H1 (£2(J>(T*M))) = 2 — 1.

Note that when m=2r +1, A = F" A dyAis the Chern-Simons
mass term with components

I ijikijoko-jrkr . : .
A= enhiRR rrF]1k1F/2k2"'F/rkr'



	Examples

