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Differential equations as connections

Any linear ODE, e.g.

d?u

du
@"‘QE—FﬁU:O,

can be viewed as a first order system: set v = v/ and then
d fuy_ (0 1 u
dz\v) \-B —a/\v)’

This defines a flat connection

Vod+ (0 _1> dz,

so that the system is



Flat connections as representations

Flat connection on vector bundle E: for each vector field V € T,
Vy : E—E

Curvature zero:
Vv = [V, V).

(E, V) is a representation of the Lie algebroid Tx.



Solving ODE

Fix an initial point zg. Solving the equation along a path v from z
to z gives an invertible matrix

¥(2)

mapping an initial condition at zy to the value of the solution at z.

<3

This is called a fundamental solution and its columns form a basis
of solutions.

Also called Parallel transport operator, and depends only on the
homotopy class of ~.



The fundamental groupoid
Define the fundamental groupoid of X:

M1(X) = {paths in X}/(homotopies fixing endpoints)

Product: concatenation of paths

Identities: constant paths
Inverses: reverse directions
Manifold of dimension 2(dim X)




Parallel transport as a representation

The parallel transport gives a map
VM (X) = GL(n,C)
which is a representation of [;(X):

V(1172) = V(m)¥(72)
V(v ) =w(y)™
W1, =1

We call ¥ the universal solution of the system.



Riemann—Hilbert correspondence

Correspondence between differential equations, i.e. flat connections

AVAS

Q%(E) = Qx(&),

and their solutions, i.e. parallel transport operators

V() 2 &0 = &)

{representations of Tx}

Differentiation

Integration

{representations of ;(X)}




Main problem: singular ODE

A singular ODE leads to a singular (meromorphic) connection
V =d+ A(z)z *dz.

For example, the Airy equation f” = xf has connection

V:d+<0 _1>dx,
—-x 0

and in the coordinate z = x~1

V=d+ ( 0 _12> 7z 3dz.
—zZ —Z

near infinity,



Singular ODE

Singular ODE have singular solutions:
fl=z72f f=Cel/*

Formal power series solutions often have zero radius of

convergence:
o -1 z )
V=d+ ( 0 0) z “dz

has solutions given by columns in the matrix

e V2 f

(0.9]
where formally f = Z nlz",
n=0



Resummation

Borel summation/multi-summation: recover actual solutions from
divergent series:

) 00 00
S o =Y a, (1 | e dt)
n=0 0

n=0

1 & > ant” t/z
== T | e W2 dt

The auxiliary series may now converge.



Our point of view
The Stokes groupoids

Traditional solutions (z):

multivalued

not necessarily invertible

essential singularities

zero radius of convergence

Why? They are written on the wrong space. The correct space
must be 2-dimensional analog of the fundamental groupoid.



The main idea
Tx(—D) as a Lie algebroid

View a meromorphic connection not as a representation of Tx with
singularities on the divisor D = ky - p1 + -+ - + kn - pp, but as a
representation of the Lie algebroid

A = Tx(—D) = sheaf of vector fields vanishing at D
d
_ k>~
B < az>

A defines a vector bundle over X which serves as a replacement for
the tangent bundle 7x.



Lie algebroids

Introduction

Definition: A Lie algebroid (A, [,], a) is a vector bundle A with a
Lie bracket on its sections and a bracket-preserving bundle map

a: A—Tx,

such that [u, fv] = flu, v] + (La(u)f)v‘



Lie algebroids

Representations

Definition: A representation of the Lie algebroid A is a vector
bundle £ with a flat .A-connection

V:ES A ®E,  V(fs)=fVs+ (daf)s.

For A = Tx(—D) = (z*0,), we have A* = (z7kdz), and so

V =d+A(z)(z %dz)
= (20, + A(2)) z7¥dz,

i.e. a meromorphic connection.



Lie Groupoids

Introduction

Definition: A Lie groupoid G over X is a manifold of arrows g
between points of X.

Each arrow g has source s(g) € X and target t(g) € X. The
maps s,t : G — X are surjective submersions.

There is an associative composition of arrows

m: Gex,G — G.

Each x € X has an identity id(x) € G; this gives an
embedding X C G.

Each arrow has an inverse.

Examples:
— The fundamental groupoid M1 (X).
— The pair groupoid X x X, in which

(Xuy) -(y,Z) = (X’Z)'



Lie Groupoids

Another example: action groupoids

Given a Lie group K and a K-space X, the action groupoid
G = K x X has structure maps

s(k,x) =x, t(k,x)=k-x,

and obvious composition law.

For example, the action of C on C via
u

u-z=e€ez

gives rise to a groupoid G = C x C with the following structure:
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Action groupoid for C action on C given by u -z = e"z.
Vertical lines are s-fibres and blue curves are t-fibres.



Lie Groupoids

Relation to Lie algebroids

The Lie algebroid A of a Lie groupoid G over X is defined by:

./4 = N(Id(X)) = kers*|id(x).

- Sections of A have unique extensions to right-invariant vector
fields tangent to s-foliation F. Thus A inherits a Lie bracket.

- t-projection defines the anchor a:

t, - A — Tx.



Lie Groupoids

Representation

Definition: A representation of a Lie groupoid G over X is a
vector bundle £ — X and an isomorphism

V:s"E = t"E, Vg =V,0W,

Integration: If £ has a flat A-connection, then t*€ has a usual
flat connection along s-foliation F.
s*& is trivially flat along F, and so the identification

s*Eliax) = t"Eliax)
may be extended uniquely to
V:s*E — t*E,

as long as the s-fibres are simply connected.



Lie Groupoids

Lie Ill Theorem

In this way, we obtain an equivalence
Rep(A) > Rep(G),

using nothing more than the usual existence and uniqueness
theorem for nonsingular ODEs.



Concrete Examples
Stokes groupoids

Example: Stox = IM1(C, k- 0) = C x C with

s(z,u) =z

t(z,u) = exp(uz""1)z
(22, 10) - (21, 11) = (21, o exp((k — Durzf 1) + wn).
For k = 1, coincides with action groupoid, but for kK > 1 not an
action groupoid.
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Sto; groupoid for 1st order poles on C
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Sto, groupoid for 2nd order poles on C
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Stos groupoid for 3rd order poles on C
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Sto4 groupoid for 4th order poles on C



Concrete Examples
Stokes groupoids

We can write Stox more symmetrically:
s(z,u) = exp(—Luz"1)

t(z, u) = exp( %uzk_l)z

z



Sto; groupoid for 1st order poles on C
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Applications

Universal domain of definition for solutions to ODE

Theorem: If ¢ is a fundamental solution of Vi) =0, i.e. a flat
basis of solutions, and if V is meromorphic with poles bounded by
D, then ¥ may be

- multivalued
- non-invertible
- singular,

however

is single-valued, smooth and invertible on the Stokes groupoid.



Applications

Summation of divergent series

Recall that the connection

. —1 y4 _2
V—d—i—(o 0>z dz

has fundamental solution
B etz f
v=("" 1),

o0
where formally f = Z nlz",
n=0

V is a representation of 7¢(—2 - 0), and so the corresponding
groupoid representation W is defined on Sto,. For convenience we
use coordinates (z, 1) on the groupoid such that

S(zn) =z, Hzop) = 2(1—z)



Applications

Summation of divergent series

—-1/z -1/z -1
V=tyosypt =t (e 3 s* (e 6
1 1
. e~ (I=zn)/z pxf\ [(el/z  _s*f
N 1 1
_[et t°f — els*f
N 1

But we know a priori this converges on the groupoid:



Applications

Summation of divergent series

Indeed, using f = > 77 n! zn+1

— €S T =— . . . p s
2 2 () +2) (i) + 1)

which is a convergent power series in two variables for the
representation V.



