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The problem, v1, acknowledgement aggregation

packets acknowledgement

We will mostly consider hight 2 trees
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The problem, v2, joint replenishment
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given set of demands (retailer, time interval)

compute a valid delivery schedule to quickly replenish used
stock at retailers

we may assume no storage at the warehouse

minimize shipment costs (retailer orders + warehouse orders)

pay per order, independent of the amount of items shipped
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The problem, v3, make to order production planning
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just like before, but time is reversed

given set of demands (retailer, time interval)

compute a valid delivery schedule to provide items in time

we may assume no storage at the warehouse

minimize shipment costs (retailer orders + warehouse orders)

pay per order, independent of the amount of items shipped
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The problem, we decide for notation v2:JRPD
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cost model: linear waiting cost vs. deadlines

some algorithms work in both models

today we concentrate on deadlines

also consider the uniform deadline case
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LP-relaxation

minimize cost(x) =
∑U

t=1
(C xt +

∑m
ρ=1

cρ x
ρ
t )

subject to xt ≥ xρt for all t ∈ U , ρ ∈ {1, . . . ,m} (1)∑d
t=r x

ρ
t ≥ 1 for all (ρ, r , d) ∈ D (2)

xt , x
ρ
t ≥ 0 for all t ∈ U , ρ ∈ {1, . . . ,m}.
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Previous results

NP-complete : Becchetti et al. '09

APX-hard (even for 3 demands per retailer) : Nonner and
Souza '09

2-apx. primal-dual algorithm: Levi, Roundy and Shmoys '06

1.8-apx. : Levi et. al '08

5/3 ≈ 1.67 -apx. : Nonner and Souza '09
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Our contribution

For general demands:

e/(e-1) ≈ 1.58 apx. (easier version of the analysis)

1.574-apx. (more re�ned analysis)

1.245-lower bound on the inegrality gap

For equal length intervals

1.5-apx.

APX-hardness (even with up to 4 demands per retailer)

1.2-lower bound on integrality gap
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Easy algorithms: (bifactor approximation)

Cost naturally splits into warehouse and retailer orders

We consider LP-rounding alg. which directly relate the cost of
the algorith to the corresponding part of LP-cost

We bound ALG = ALGw + ALGr ≤ λwLPw + λrLPr

We say ALG is a (λw , λr )-apx algorithm.

We will next show a (1,2) and a (3, 1.5)-apx algorithm
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Easy algorithms: (1,2)-apx

One level problem is easy

Ignore retailer level cost to compute warehouse orders

Compute optimal retailer orders given the �xed warehouse
orders

Show that retailer orders are now only twice more expensive
than in OPT (or in LP)
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Easy algorithms (3,1.5)-apx

LP encodes density of shipments over time

de�ne �LP-time� between two events and the total
LP-shipment between these events

observe that �LP-time geos faster� on warehouse edge than on
any retailers edge

Consider the following algorithm:

plan warehouse shipment every 1/3 of �warehouse LP-time�

plan retailer ρ shipment every 2/3 of �retailer ρ LP-time�

Note that we may combine (1,2) and (3, 1.5) to get (1.8, 1.8),
which is essentially the work of Levi et al.
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Our algorithm: Distribution

Instead of scheduling warehouse orders every 1/3 of LP-time, we do
it iteratively and the next order is selected to be a certain random
distance from the previous one.

Fix θ = 0.36455 (slightly less than 1/e). Over the half-open
interval [0, 1), the probability density function p is

p(y) =


0 for y ∈ [0, θ)

1/y for y ∈ [θ, 2θ)
1−ln((y−θ)/θ)

y
for y ∈ [2θ, 1).

The probability of choosing 1 is 1−
∫
1

0
p(y) dy ≈ 0.0821824.
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LP virtual time

x1 x2
…

βi

virtual time of ρ = 1

γ

virtual warehouse time = 1

αp

density
(upper envelope)
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Algorithm

Algorithm Roundp(C , cρ,D, x)

1: Draw independent random samples s1, s2, . . . from p. Let
gi =

∑
h≤i sh.

Set global cuto� sequence g = (g1, g2, . . . , gI ), where
I = min{i | gi ≥ Û − 1}.

2: For each retailer ρ independently, choose ρ's local cuto�
sequence `ρ ⊆ g greedily to touch all intervals [a, b] with
ωρ(b)− ωρ(a) ≥ 1.
That is, `ρ = (`ρ

1
, `ρ

2
, . . . , `ρJρ) where `

ρ
j is

max{g ∈ g | ωρ(g)− ωρ(`ρj−1
) ≤ 1} (interpret `ρ

0
as 0), and Jρ

is min{j | ωρ(Û)− ωρ(`ρj ) ≤ 1}.
3: For each gi ∈ g , de�ne time ti ∈ [U] to be minimum such that∑ti

t=1
xt ≥ gi . Return the schedule{(

ti , {ρ | gi ∈ `ρ}
)
| gi ∈ g

}
.
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Algorithm: intuition

 

   . . .
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w

2�`0

. . .sfj+2 sfj+1sfj+1

!(`0) � !(`j) = 1

1 go forward one unit of retailer time (deadline)
2 go backward one unit of warehouse time
3 go forward to the next warehouse order (there must be at least

one)
4 see how much time left before deadline (z on the picture)
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Algorithm: fragment of easier variant of analysis

take probability density function p(y) = 1/y for y ∈ [1/e, 1]
and p(y) = 0 elsewhere.

we bound the move on the warehouse time:
E[p] =

∫
1

1/e y p(y) dy =
∫
1

1/e 1 dy = 1− 1/e.

we bound the waist on the retailer time:
Pr[s1 > z ]z + Pr[s1 ≤ z ]E[z − s1 | s1 ≤ z ].
This simpli�es to z − Pr[s1 ≤ z ]E[s1 | s1 ≤ z ], which by
calculation is

z −
∫ z

1/e y p(y) dy = z −
∫ z

1/e dy = z − (z − 1/e) = 1/e.
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Walds theorem

Let random index T ∈ {0, 1, 2, . . .} be a stopping time for the
sequence, that is, for any positive integer t, the event �T < t� is
determined by state St .

Lemma (Wald's equation)

Suppose that (i) (∀t < T ) E[φ(St+1) | St ] ≥ φ(St) + ξ for �xed ξ,
and (ii) either (∀t < T ) φ(St+1)− φ(St) ≥ F or

(∀t < T ) φ(St+1)− φ(St) ≤ F , for some �xed �nite F , and T has

�nite expectation.

Then ξ E[T ] ≤ E[φ(ST )− φ(S0)].

In the applications here, we always have ξ = Z(p) > 0 and
φ(ST )− φ(S0) ≤ U for some �xed U. In this case Wald's equation
implies E[T ] ≤ U/Z(p).
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1.5-apx for uniform length demands

instances of length 3 are plynomial time solvable
create a set of small instances that cover all requests
show that there exists solution to the set of small instances
with cost 1.5 OPT
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APX-hardness for uniform length demands, sketch

reduce from degree 3 vertex cover

synchronize 3 instances of a vertex

for each edge: put two fresch copies of its endpoints nearby

show that VC using K vertices corresponds to a solution of
cost 10.5n + K + 6

0
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related work: implication for general penalty cost

best known apx. so far: 1.8

we can now improve it to 1.791 by a combination of 3
algorithms [*]
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[*] Joint work with Bienkowski, B., Chrobak, Jez, and Sgall
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More recent results: online 2-level trees

3-competitive alg. for JRP [Buchbinder et al '08]

2.753-lower bound on comp. ratio for linear waiting costs [*]

2-competitive algorithm for online JRPD [*]

matching lower bound of 2 on competitiveness fro JRPD [*]

[*] Joint work with Bienkowski, B., Chrobak, Jez, and Sgall
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Even more related work: linear waiting penalty

O�ine:

polynomial time solvable on line networks [*]

constant factor apx. for general trees

Online:

already on a single edge it encodes a rent-or-buy problem

5-competitive alg. for a line [*]

2+φ lower bound on a line [*]

open for general trees

[*] Joint work with Bienkowski, Chrobak, Jez, Sgall, and
Stachowiak
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Than you for your attention!
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