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Very useful in practice.

Not obvious how to analyze from theoretical
point of view.

Fast algorithm ⇒ Polynomial-time algorithm.

How to measure how well the instance
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instance of NP-hard problem

k

Multidimensional analysis.

Specify parameter.

Instead of Vertex Cover, we have

Vertex Cover / sol. size

Vertex Cover / treewidth

Vertex Cover / edition
distance to cluster graphs

Vertex Cover / pathwidth and
maximum degree

Goal: Do something clever when the parameter is small.
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poly time

size ≤ g(k)

small: g(k) polynomial

or even linear
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Planar graphs

Planar graphs have cool algorithmic properties.

Many tools are reincarnations of Lipton-Tarjan separation theorem.

Theorem (Grid minor theorem for planar graphs)

A planar graph without a k × k grid as a minor has treewidth O(k).

Basic algorithmic usage:

Vertex Cover < k
⇒ no

√
2k ×

√
2k grid as a minor

⇒ treewidth ∈ O(
√
k)

⇒ subexponential (in k) algorithm.
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Bidimesionality framework

Bidimensionality framework

applies to a variety of problems, e.g.,

Vertex Cover,
Dominating Set,
Feedback Vertex Set,
Connected Vertex Cover, . . .

in sparse graph classes, such as

planar graphs,
bounded-genus graphs,
graphs with a fixed excluded minor,
excluded topological minor, bounded expansion, . . .

and provides

subexponential fixed-parameter algorithms,
linear kernels,
EPTASes.
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Caveats

Recent years: many efforts to generalize in terms of graph class:

fixed excluded minor, fixed excluded topological minor, bounded
expansion, . . .

But they are important problems not covered at all.

recall: Vertex Cover < k ⇒ no
√

2k ×
√

2k grid as a minor;
fails for e.g. Steiner Tree / number of edges of the tree,
(and many problems in directed graphs).

Subexponential algorithms? Polynomial or linear kernels?
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Our results

Theorem (Polynomial kernel for Planar Steiner Tree)

Steiner Tree in planar graphs, parameterized by the number of edges
in the solution, has a kernel of size O(k142).
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Our results

Theorem (Polynomial kernel for Steiner Tree and Steiner Forest)

Steiner Tree and Steiner Forest in bounded-genus graphs,
parameterized by the number of edges in the solution, have polynomial
kernels.

Theorem (Polynomial kernel for Planar Edge Multiway Cut)

Edge Multiway Cut in planar graphs, parameterized by the size of
the solution, has a polynomial kernel.

Corollary (Subexponential algorithms)

Steiner Tree in bounded-genus graphs and Edge Multiway Cut
in planar graphs admit subexponential algorithms.
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Backbone theorem

Statement that stands behind:

Definition

A brick is a connected plane graph G with outer face surrounded by a
simple cycle ∂G , called the perimeter of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k,
one can in time O(k142|G |)
find a set F of edges in G of size O(k142)
such that for any set of terminals S ⊆ ∂G
there exists a Steiner tree connecting S
that is contained in F and optimal in the entire G.

M. Pilipczuk ×2, P. Sankowski, E.J. van Leeuwen Network Sparsification for Planar Steiner Tree 16/28



Introduction and background
Our contribution

Our results
Our techniques

Backbone theorem

Statement that stands behind:

Definition

A brick is a connected plane graph G with outer face surrounded by a
simple cycle ∂G , called the perimeter of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k,
one can in time O(k142|G |)
find a set F of edges in G of size O(k142)
such that for any set of terminals S ⊆ ∂G
there exists a Steiner tree connecting S
that is contained in F and optimal in the entire G.

M. Pilipczuk ×2, P. Sankowski, E.J. van Leeuwen Network Sparsification for Planar Steiner Tree 16/28



Introduction and background
Our contribution

Our results
Our techniques

Backbone theorem

Statement that stands behind:

Definition

A brick is a connected plane graph G with outer face surrounded by a
simple cycle ∂G , called the perimeter of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k,

one can in time O(k142|G |)
find a set F of edges in G of size O(k142)
such that for any set of terminals S ⊆ ∂G
there exists a Steiner tree connecting S
that is contained in F and optimal in the entire G.

M. Pilipczuk ×2, P. Sankowski, E.J. van Leeuwen Network Sparsification for Planar Steiner Tree 16/28



Introduction and background
Our contribution

Our results
Our techniques

Backbone theorem

Statement that stands behind:

Definition

A brick is a connected plane graph G with outer face surrounded by a
simple cycle ∂G , called the perimeter of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k,
one can in time O(k142|G |)

find a set F of edges in G of size O(k142)
such that for any set of terminals S ⊆ ∂G
there exists a Steiner tree connecting S
that is contained in F and optimal in the entire G.

M. Pilipczuk ×2, P. Sankowski, E.J. van Leeuwen Network Sparsification for Planar Steiner Tree 16/28



Introduction and background
Our contribution

Our results
Our techniques

Backbone theorem

Statement that stands behind:

Definition

A brick is a connected plane graph G with outer face surrounded by a
simple cycle ∂G , called the perimeter of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k,
one can in time O(k142|G |)
find a set F of edges in G

of size O(k142)
such that for any set of terminals S ⊆ ∂G
there exists a Steiner tree connecting S
that is contained in F and optimal in the entire G.

M. Pilipczuk ×2, P. Sankowski, E.J. van Leeuwen Network Sparsification for Planar Steiner Tree 16/28



Introduction and background
Our contribution

Our results
Our techniques

Backbone theorem

Statement that stands behind:

Definition

A brick is a connected plane graph G with outer face surrounded by a
simple cycle ∂G , called the perimeter of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k,
one can in time O(k142|G |)
find a set F of edges in G of size O(k142)

such that for any set of terminals S ⊆ ∂G
there exists a Steiner tree connecting S
that is contained in F and optimal in the entire G.

M. Pilipczuk ×2, P. Sankowski, E.J. van Leeuwen Network Sparsification for Planar Steiner Tree 16/28



Introduction and background
Our contribution

Our results
Our techniques

Backbone theorem

Statement that stands behind:

Definition

A brick is a connected plane graph G with outer face surrounded by a
simple cycle ∂G , called the perimeter of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k,
one can in time O(k142|G |)
find a set F of edges in G of size O(k142)
such that for any set of terminals S ⊆ ∂G

there exists a Steiner tree connecting S
that is contained in F and optimal in the entire G.

M. Pilipczuk ×2, P. Sankowski, E.J. van Leeuwen Network Sparsification for Planar Steiner Tree 16/28



Introduction and background
Our contribution

Our results
Our techniques

Backbone theorem

Statement that stands behind:

Definition

A brick is a connected plane graph G with outer face surrounded by a
simple cycle ∂G , called the perimeter of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k,
one can in time O(k142|G |)
find a set F of edges in G of size O(k142)
such that for any set of terminals S ⊆ ∂G
there exists a Steiner tree connecting S

that is contained in F and optimal in the entire G.

M. Pilipczuk ×2, P. Sankowski, E.J. van Leeuwen Network Sparsification for Planar Steiner Tree 16/28



Introduction and background
Our contribution

Our results
Our techniques

Backbone theorem

Statement that stands behind:

Definition

A brick is a connected plane graph G with outer face surrounded by a
simple cycle ∂G , called the perimeter of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k,
one can in time O(k142|G |)
find a set F of edges in G of size O(k142)
such that for any set of terminals S ⊆ ∂G
there exists a Steiner tree connecting S
that is contained in F

and optimal in the entire G.

M. Pilipczuk ×2, P. Sankowski, E.J. van Leeuwen Network Sparsification for Planar Steiner Tree 16/28



Introduction and background
Our contribution

Our results
Our techniques

Backbone theorem

Statement that stands behind:

Definition

A brick is a connected plane graph G with outer face surrounded by a
simple cycle ∂G , called the perimeter of the brick.

Theorem (Steiner Tree in bricks)

Given a brick G with perimeter ∂G of length k,
one can in time O(k142|G |)
find a set F of edges in G of size O(k142)
such that for any set of terminals S ⊆ ∂G
there exists a Steiner tree connecting S
that is contained in F and optimal in the entire G.

M. Pilipczuk ×2, P. Sankowski, E.J. van Leeuwen Network Sparsification for Planar Steiner Tree 16/28



Introduction and background
Our contribution

Our results
Our techniques

Bricks

[Borradaile, Klein, Mathieu, 2009] Bricks are cool!

More robust!
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Bricks

[Borradaile, Klein, Mathieu, 2009] Bricks are cool!

Divide and conquer!

G

F

G1

G2

G3

G4
G5

G6

G7

F1,F2, . . . ,F7
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Polynomial bound

Define: F :=
⋃

i Fi

Want: |F | ≤ poly(|∂G |)
Idea: |∂G | is an excellent potential

Need:
(i)

∑
i |∂Gi | ≤ C |∂G | for some C ,

(ii) ∀i |∂Gi | ≤ (1− ε)|∂G | for some ε > 0.
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Steiner tree as a separator

G1

G2

G3

G4

G5

G6

(i)
∑

i |∂Gi | ≤ C |∂G |,
(ii) ∀i |∂Gi | ≤ (1− ε)|∂G |.

Crucial observation:
An optimal Steiner tree is usually a
good separator!

Cond. (i) is for free with C = 3

Proof:
∂G is an excellent Steiner tree
⇒ |T | ≤ |∂G |
⇒

∑
i |∂Gi |

= |∂G |+ 2|T |
≤ 3|∂G |
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Cond. (i) is for free with C = 3
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⇒
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Bad cases

Bad cases for (ii) ∀i |∂Gi | ≤ (1− ε)|∂G |.

G2G1 G1
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Mountains

L R

`

r

v

P

|P| ≥ |R|

Definition (Mountain)

M = (L,R) is a mountain if
(i) L is a shortest `− R path inside M, and
(ii) R is a shortest r − L path inside M.
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Mountain range theorem

`

r

vv1 v2 v3 v4 v5

Theorem (Mountain range theorem)

For fixed δ < 1/2 and endpoints ` and r ,

all maximal mountains of length at most δ|∂G |,
look like on the figure
and have total perimeter at most 3|∂G [`, r ]|.
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All mountain ranges

C

G15

G14

G13

G12
G11G10

G9

G8

G7

G6

G5
G4 G3

G2

G1

bound on the perimeter of a mountain range ⇒ |C | = O(|∂G |)
inside C mark only shortest paths between points on the perimeter.
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Recap

If |∂G | = O(1), do brute-force.

If there exists an optimal Steiner tree T that is a
good separator, split with T and recurse.

Finding such T is a technical, but natural DP.
Fix ε = 1/36.

Otherwise, compute the union of O(1/ε2)
mountain ranges and the cycle C . Perform
decomposition of the second type and recurse.

Some technical massage to cope with the second
bad case.

Big exponent due to small ε and large C in the decomposition of the
second type.
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Open problems

Some open problems:

Get better exponent!

For the brick theorem, a grid yields an Ω(k2) lower bound.

What about parameter number of terminals?

What about problems with vertex-based measures, such as Node
Multiway Cut?

Also a combinatorial kernel for Planar Odd Cycle
Transversal would be nice.

Lift to graphs with fixed excluded minor?

Edge Multiway Cut for e.g. torus is also open.

Subexponential algorithm for Planar Steiner Forest?

Main obstacle: NP-hard for treewidth 3.
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Thank you

Questions?

Tikz faces based on a code by Raoul Kessels,
http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)
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