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Non-Uniform Graph Partitioning

Input:
e G=V,E),w: E— Ry.
@ Capacities ny,nz,...,n, S.t. Z?:l nj = n.
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Input:
0 G=(V,E),w: E—R,.
@ Capacities ny,na,...,n; S.t Zle n; = n.
Output:
@ A partition S1, ..., S, of V where each |S;| < n; minimizing:
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Problem Definition

Non-Uniform Graph Partitioning

Input:
0 G=(V,E),w: E—R,.
@ Capacities ny,na,...,n; S.t Zle n; = n.
Output:
@ A partition S1, ..., S, of V where each |S;| < n; minimizing:
k
3(S;) -

1

N —

J

Note:
@ Number of parts k£ might depend on n.
@ Capacities might be of different magnitudes.
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Theoretical:

@ Captures well studied problems:
Min-Bisection, Min b-Balanced-Cut, Min k-Partitioning.

Roy Schwartz Non-Uniform Graph Partitioning



Introduction BEIETE

Motivation

Theoretical:
@ Captures well studied problems:
Min-Bisection, Min b-Balanced-Cut, Min k-Partitioning.

Practical:
@ Cloud and Parallel Computing: parallelism.
Hardware design: VLSI layout, circuit testing.
Data mining: clustering.

]
o
@ Social network analysis: community discovery.
@ Vision: pattern recognition.

o

Scientific Computing: linear systems.
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Related Work

Heuristics:

[Barnes-82], [Barnes-Vanneli-Walker-88], [Sanchis-89], [Hadley-Mark-Vanneli-92],
[Rendl-Wolkowicz-95] ...

Mainly use spectral theory, local search and quadratic programming.
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Related Work

Heuristics:

[Barnes-82], [Barnes-Vanneli-Walker-88], [Sanchis-89], [Hadley-Mark-Vanneli-92],
[Rendl-Wolkowicz-95] ...

Mainly use spectral theory, local search and quadratic programming.

Worst Case Guarantee

No meaningful known bounds.
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Balanced Graph Partitioning: (n; = »/x)
@ Min-Bisection: (k = 2)

O(log®?n)  [Feige-Krauthgamer-02]

True Approx. { O (logn) [Récke-08]
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Balanced Graph Partitioning: (n; = »/x)
@ Min-Bisection: (k = 2)

True Approx { O(log®?n)  [Feige-Krauthgamer-02]

O (logn) [Racke-08]

Lo O (logn) [Leighton-Rao-99]
Bicriteria Approx. { O (vlogn)  [Arora-Rao-Vazirani-08]

Related to Sparsest-Cut and Min b-Balanced-Cut.
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Balanced Graph Partitioning: (n; = »/x)
@ Min-Bisection: (k = 2)

True Approx { O(log®?n)  [Feige-Krauthgamer-02]

O (logn) [Racke-08]

Lo O (logn) [Leighton-Rao-99]
Bicriteria Approx. { O (vlogn)  [Arora-Rao-Vazirani-08]

Related to Sparsest-Cut and Min b-Balanced-Cut.

@ Min k-Partitioning: (general k)

NP-Hardness no true approximation [Andreev-Racke-06]
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Balanced Graph Partitioning: (n; = »/x)
@ Min-Bisection: (k = 2)
O(log®?n)  [Feige-Krauthgamer-02]
True Approx. { O(logn)  [Récke-08]
Lo O (logn) [Leighton-Rao-99]
Bicriteria Approx. { O (vlogn)  [Arora-Rao-Vazirani-08]
Related to Sparsest-Cut and Min b-Balanced-Cut.

@ Min k-Partitioning: (general k)

NP-Hardness no true approximation [Andreev-Racke-06]

{ (O (logn),2) [Even-Naor-Rao-Schieber-99]
Bicriteria Approx. (O (Viognlogk) ,2) [Krauthgamer-Naor-S-09]

(O(e™21log*?n),14+¢) [Andreev-Récke-06]
(O(logn),1+¢) [Feldmann-Forschini-12]
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Capacitated Metric Labeling:
@ The same as Non-Uniform Graph Partitioning with additional assignment costs.

(O (logn),O((logk))) nj=n/k [Naor-S-05]
(O (logn),1) constant k. [Andrews-Hajiaghayi-Karloff-Moitra-11]

@ NP ¢ ZPTIME (npotvlog(n)) =
No finite approximation that violates capacities by O(log/2~< k), Ve > 0.
[Andrews-Hajiaghayi-Karloff-Moitra-11]
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Our Result

Theorem [Krauthgamer-Naor-S-Talwar-13]
There is a bicriteria approximation algorithm achieving a guarantee of:

(O (logn),0(1))

for Non-Uniform Graph Partitioning.
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How many vertices to cut in each step?

@ Spreading Metrics:
Only spreading with average capacity - insufficient.
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Known Techniques - Issues

@ Recursive Partitioning:
How many vertices to cut in each step?

@ Spreading Metrics:
Only spreading with average capacity - insufficient.

© Racke’s Tree Decomposition:
Dynamic programming does not seem to yield poly running time.
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Known Techniques - Issues

@ Recursive Partitioning:
How many vertices to cut in each step?

@ Spreading Metrics:
Only spreading with average capacity - insufficient.

© Racke’s Tree Decomposition:
Dynamic programming does not seem to yield poly running time.

Our Approach

@ Configuration LP.
@ Randomized rounding + concentration via stopping times.
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]-"jé{S : SQV,|S|§’RJ}
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Fi2(S: SCVIS|<ny)

L
(P) min fz 3(S) - zs,;

2
=
k
s.t. Z Z zg; =1 YueV

Roy Schwartz Non-Uniform Graph Partitioning



Techniques
Rounding
Analysis

Algorithm

Configuration LP (Cont.)

(P) can be efficiently solved up to a loss of O(logn) in the objective.
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(P) can be efficiently solved up to a loss of O(logn) in the objective.

Proof Outline:

@ Dual separation oracle of (P) relates to Min p-Unbalanced-Cut.
Techniques from [Racke-08] give an O(log n) approximation.
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Configuration LP (Cont.)

(P) can be efficiently solved up to a loss of O(logn) in the objective.

Proof Outline:

@ Dual separation oracle of (P) relates to Min p-Unbalanced-Cut.
Techniques from [Racke-08] give an O(log n) approximation.

@ Difficulty: Applying the above in algorithms for solving mixed
packing/covering LPs yields O(log n) loss in cost and capacity.
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Configuration LP (Cont.)

(P) can be efficiently solved up to a loss of O(logn) in the objective.

Proof Outline:

@ Dual separation oracle of (P) relates to Min p-Unbalanced-Cut.
Techniques from [Racke-08] give an O(log n) approximation.

@ Difficulty: Applying the above in algorithms for solving mixed
packing/covering LPs yields O(log n) loss in cost and capacity.

Solution: Scaling constraints differently. [ |
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@ n; > ny > ... > n; and each n; is a power of 2.
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Randomized Rounding

Assumption:

@ n; > ny > ... > n; and each n; is a power of 2.

Notation:

Ny =Ny =N3g >Ny =MNg > Ng = Ny = Ng > sevrararens
( ' )L Y )\ ' J

Wy W, W3
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Algorithm Al

Randomized Rounding

Assumption:

@ n; > ny > ... > n; and each n; is a power of 2.

Notation:
Ny =Ny =N3g >Ny =MNg > Ng = Ny = Ng > sevrararens
( ' )L Y )\ ' J
Wy W, W3
W’L = {J N ’]’LJ = 2_('L_1)n1} 1 = 1’27 ’g
ki = |Wy
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Randomized Rounding (Cont.)

Idea: Covering vertices by random cuts.
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Randomized Rounding (Cont.)

Idea: Covering vertices by random cuts.

Rounding - General Approach

Q@ H;< Dforeveryi=1,..., 4
Q@ While V £ 0:
e Choose j ~ Unifl[l,...,k].
Choose S € F; w.p. zs,;.
Let r be the mega-bucket s.t. j € W,.
H, +— H.U{SNV}.
V< V\S.
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Randomized Rounding - Example

® Hi=¢ ° o °

H2=¢ ° L o [ )
® H;=¢ ® ®
® Hy=¢

Suj1)  J1EW;
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Randomized Rounding - Example

® Hi=¢ ° d o
H2=¢ ° L4 ° [ ]
® H; = {S;} o ® L4

Suj1)  J1EW;
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Randomized Rounding - Example

Algorithm

® = {S\5}

Hy,= ¢
L H3={S1}
® Hy=¢

(S2.J2)  J. EWq
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Algorithm

Randomized Rounding - Example

® = {S\5}
Hy,= ¢
® H; = {5,5\(5;USz)}

(S3,j3)  Jjs EWs



® = {S\5}
Hy,= ¢
® H; = {5,5\(5;USz)}

(Saja)  Ja €W,
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Randomized Rounding - Example

® = {S\5}
Hy = {S4\(S2 U S3)}
® H; = {5,5\(5;USz)}

(Saja)  Ja €W,
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® = {S\5}
Hy = {S4\(S2 U S3)}
® H; = {5,5\(5;USz)}

(Ss.js)  js EWp

Roy Schwartz Non-Uniform Graph Partitioning



Algorithm

Randomized Rounding - Example

® = {S\5}
Hy = {S4\(S2 U S3)}
® H; = {5,5\(5;USz)}

® H,= {S5\(51US,)}

(Ss.js)  js EWp
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Randomized Rounding (Cont.

Question: What to do when all vertices are covered?
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Randomized Rounding (Cont.)

Question: What to do when all vertices are covered?

Merge: While |H;| > k; merge smallest two cuts in H;. J
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Randomized Rounding (Cont.)

Question: What to do when all vertices are covered?

Merge: While |H;| > k; merge smallest two cuts in H;. J

Theorem - Cost Analysis

E [cost(ALG)] < 2 - cost (P) .

Proof Outline:

k
Pr[u and v covered in different iterations] < > Tsj .
J=1 SeF;:(u,w)ed(S)
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Observation - Interchanging Cuts Within W;
It suffices to upper bound:

N; £ number of vertices covered by H; at the end .
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Algorithm

Observation - Interchanging Cuts Within W;

It suffices to upper bound:

N; £ number of vertices covered by H; at the end .

Note:
ok [Nl] <k;- 2_(1_1)711.
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Algorithm

Observation - Interchanging Cuts Within W;
It suffices to upper bound:

N; £ number of vertices covered by H; at the end .

Note:
@ E[N;] <k;-27(Un,y,
@ ¢ = O(log k) by merging every W; with k; < 2'/2(=1 into W;.
(¢ is number of mega-buckets)
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Capacity Analysis - Attempt |

Algorithm

Observation - Interchanging Cuts Within W;
It suffices to upper bound:

N; £ number of vertices covered by H; at the end .

Note:
@ E[N;] <k;-27(Un,y,
@ ¢ = O(log k) by merging every W; with k; < 2'/2(=1 into W;.
(¢ is number of mega-buckets)

Conclusion: Markov + union bound = O(log k) capacity violation.
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Martingale

My ZEN; | (S1,51)s -, (St,5¢)]

{M; +};2, is a martingale with respect to {(S¢, j¢) },—; -
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Algorithm

Martingale

My ZEN; | (S1,51)s -, (St,5¢)]

{M; +};2, is a martingale with respect to {(S¢, j¢) },—; -

Note:
@ M;o=E[N].
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Martingale

My ZEN; | (S1,51)s -, (St,5¢)]

{M; +};2, is a martingale with respect to {(S¢, j¢) },—; -

Note:
o Mi,O =E [Nz]
@ |M;y — M; ;1| < k;-2=(0=Yn,. (Lipschitz)
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Algorithm

Martingale

My ZEN; | (S1,51)s -, (St,5¢)]

{M; +};2, is a martingale with respect to {(S¢, j¢) },—; -

Note:
o Mi,O =K [Nz]
@ |M;y — M; ;1| < k;-2=(0=Yn,. (Lipschitz)
@ Number of iterations to cover V: T = O(klogn).
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Algorithm

Martingale

My ZEN; | (S1,51)s -, (St,5¢)]

{M; +};2, is a martingale with respect to {(S¢, j¢) },—; -

Note:
o Mi,O =K [Nz]
@ |M;y — M; ;1| < k;-2=(0=Yn,. (Lipschitz)
@ Number of iterations to cover V: T = O(klogn).

Conclusion: Azuma + union bound = O(v/klognloglogk)
capacity violation.
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Worst Conditional Variance:
Let (Ty,71),...,(Ti—1,7:—1) be the realization that maximizes:

Var[M;; — M;—1|(S1, 1) = (T1,71), - -+, (Se—1,je—1) = (Ty—1,7-1)] -

v; ¢ is the worst variance value.
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Capacity Analysis - Attempt IlI

Worst Conditional Variance:
Let (Ty,71),...,(Ti—1,7:—1) be the realization that maximizes:

Var[Mi,t — M;;1|(S1,51) = (T, 1), -+, (S, Je—1) = (thhrtfl)] .

v; ¢ is the worst variance value.

Note:
@ For every t a different conditioning might be chosen.

@ Martingale concentration via bounded variances (Bernstein) is
not sufficient:

Zt>1 v; + might be too big!
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Pr Zvar[MLt7Mi,t—1|(Sl7j1)7"'7(St—17jt—1):| is small > ?

t>1
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t>1

Pr [Z Var [Mivt — Mi,t—1|(51;j1)7 ceey (St—hjt—l)] is Sma”] > ?

Theorem - Conditional Variances Sum

Pr

Zvar[Mivt - Mi»t—l | (Slajl)a ceey (St—lajt—l)}

t>1

>2a-k; - 2‘“‘”11%] < Lo
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Pr Zvar[Mi,t*Mi,t—1|(51;j1)7---7(St—17jt—1)] issmall| > ?

t>1

Theorem - Conditional Variances Sum

Pr Z Var[Mi,t — M1 | (S1,91)s -, (St—lajt—l)}

t>1

> 2k - 2702 | < 1o

Intuition: In later iterations the changes are smaller in expectation. B
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Capacity Analysis - Attempt Il (Cont.)

Good Event

Martingale

{M;1}2, Variances are small.

Roy Schwartz Non-Uniform Graph Partitioning



Rounding
Analysis

Algorithm

Capacity Analysis - Attempt Il (Cont.)

Martingale Good Event
{M; 32, Variances are small.
N\ v
277
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Capacity Analysis - Attempt Il (Cont.)

Martingale Good Event
{M; 32, Variances are small.
N\ v
277

Freedman’s Inequality

(stopping-time based concentration)
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Capacity Analysis - Attempt Il (Cont.)

Immediate Conclusion:
Freedman’s inequality yields O(log log k) capacity violation.
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Capacity Analysis - Attempt Il (Cont.)

Immediate Conclusion:
Freedman’s inequality yields O(log log k) capacity violation.

How do we get O(1) capacity violation?
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Instance Transformation (Cont.)

What is an instance transformation?
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Instance Transformation (Cont.)

What is an instance transformation?
@ Total capacity of non-empty W; grows by a constant c.
@ Inverse transformation moves cuts from W; to some W;, j <.
@ Inverse transformation incurs a ¢ capacity violation.
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What is an instance transformation?
@ Total capacity of non-empty W; grows by a constant c.
@ Inverse transformation moves cuts from W; to some W;, j <.
@ Inverse transformation incurs a ¢ capacity violation.

What does an instance transformation provide?
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Instance Transformation (Cont.)

What is an instance transformation?
@ Total capacity of non-empty W; grows by a constant c.
@ Inverse transformation moves cuts from W; to some W;, j <.
@ Inverse transformation incurs a ¢ capacity violation.

What does an instance transformation provide?

Large total capacity of W

Better concentration as the total capacity increases
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Instance Transformation (Cont.)

What is an instance transformation?
@ Total capacity of non-empty W; grows by a constant c.
@ Inverse transformation moves cuts from W; to some W;, j <.
@ Inverse transformation incurs a ¢ capacity violation.

What does an instance transformation provide?
Large total capacity of W
Better concentration as the total capacity increases

4

Sum of conditional variances might be higher
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Instance Transformation (Cont.)

What is an instance transformation?
@ Total capacity of non-empty W; grows by a constant c.
@ Inverse transformation moves cuts from W; to some W;, j <.
@ Inverse transformation incurs a ¢ capacity violation.

What does an instance transformation provide?

Large total capacity of W

Better concentration as the total capacity increases

4

Sum of conditional variances might be higher

4

Probability that sum of conditional variances is small increases
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Instance Transformation (Cont.)

What is an instance transformation?
@ Total capacity of non-empty W; grows by a constant c.
@ Inverse transformation moves cuts from W; to some W;, j <.
@ Inverse transformation incurs a ¢ capacity violation.

What does an instance transformation provide?

Large total capacity of W

Better concentration as the total capacity increases

4

Sum of conditional variances might be higher

4

Probability that sum of conditional variances is small increases

Conclusion: O(1) capacity violation. |
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Thank You!

Questions?
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