No-Wait Flowshop Scheduling is as Hard as Asymmetric Traveling Salesman Problem

Marcin Mucha (University of Warsaw) Maxim Sviridenko (University of Warwick, DIMAP)

FND 2013, Fields Institute, Toronto 1 August 2013

 We are given n jobs J₁,..., J_n on a sequence of m machines M₁,..., M_m.

- We are given n jobs J_1, \ldots, J_n on a sequence of m machines M_1, \ldots, M_m .
- Each job is a sequence of operations O_{j1}, \ldots, O_{jm} with processing times t_{j1}, \ldots, t_{jm} .

- We are given n jobs J_1, \ldots, J_n on a sequence of m machines M_1, \ldots, M_m .
- Each job is a sequence of operations O_{j1}, \ldots, O_{jm} with processing times t_{j1}, \ldots, t_{jm} .
- Jobs can not be paused once started (no-wait scheduling).

- We are given n jobs J_1, \ldots, J_n on a sequence of m machines M_1, \ldots, M_m .
- Each job is a sequence of operations O_{j1}, \ldots, O_{jm} with processing times t_{j1}, \ldots, t_{jm} .
- Jobs can not be paused once started (no-wait scheduling).
- Every machine runs the jobs in the same order no overtaking (permutation scheduling).

- We are given n jobs J_1, \ldots, J_n on a sequence of m machines M_1, \ldots, M_m .
- Each job is a sequence of operations O_{j1}, \ldots, O_{jm} with processing times t_{j1}, \ldots, t_{jm} .
- Jobs can not be paused once started (no-wait scheduling).
- Every machine runs the jobs in the same order no overtaking (permutation scheduling).
- Find job permutation which minimizes makespan.

- We are given n jobs J_1, \ldots, J_n on a sequence of m machines M_1, \ldots, M_m .
- Each job is a sequence of operations O_{j1}, \ldots, O_{jm} with processing times t_{j1}, \ldots, t_{jm} .
- Jobs can not be paused once started (no-wait scheduling).
- Every machine runs the jobs in the same order no overtaking (permutation scheduling).
- Find job permutation which minimizes makespan.

Think: production line for steel manufacturing, or production units with no intermediate storage capacity.

Example

Example – OK

Example – OK

Example – Not OK!

Not OK!

Example due to Spieksma and Woeginger (2005).

Gilmore, Gomory (1964) $O(n \log n)$ algorithm for m = 2.

Gilmore, Gomory (1964) $O(n \log n)$ algorithm for m = 2. Papadimitriou, Kanellakis (1980) Strongly NP-hard for $m \ge 4$. * Gilmore, Gomory (1964) $O(n \log n)$ algorithm for m = 2. Papadimitriou, Kanellakis (1980) Strongly NP-hard for $m \ge 4$. * Röck, Schmidt (1983) $\lceil \frac{m}{2} \rceil$ -approximation. *

No-Wait Flowshop reduces to ATSP, so:

No-Wait Flowshop reduces to ATSP, so: Frieze, Galbiati, Maffioli (1982) $O(\log n)$ -approximation. * Asadpour et al.(2010) $O(\log n / \log \log n)$ -approximation.

No-Wait Flowshop reduces to ATSP, so: Frieze, Galbiati, Maffioli (1982) $O(\log n)$ -approximation. * Asadpour et al.(2010) $O(\log n / \log \log n)$ -approximation.

Is No-Wait Flowshop an easy case of ATSP?

Theorem (Main Result 1)

No-Wait Flowshop is as hard as ATSP, in particular APX-hard.

Theorem (Main Result 1)

No-Wait Flowshop is as hard as ATSP, in particular APX-hard.

Theorem (Main Result 2)

There is an $O(\log m)$ -approximation algorithm for No-Wait Flowshop.

2 Encoding semi-metrics in No-Wait Flowshop

2 Encoding semi-metrics in No-Wait Flowshop

 $\bigcirc O(\log m)$ -approximation

Job distance

Job distance

No-Wait Flowshop as ATSP

1 Reduction to ATSP

2 Encoding semi-metrics in No-Wait Flowshop

 \bigcirc $O(\log m)$ -approximation

Four machines

Any n-point semi-metric (V, d) embeds isometrically into the semi-metric (\mathbb{R}^n, δ) with $\delta(u, v) = \max(u, -v)$

$$\delta(x,y) = \max(x-y).$$

Any n-point semi-metric (V, d) embeds isometrically into the semi-metric (\mathbb{R}^n, δ) with

$$\delta(x,y) = \max(x-y).$$

Proof.

$$F(v) = (d(v, v_1), \ldots, d(v, v_n)).$$

Any n-point semi-metric (V, d) embeds isometrically into the semi-metric (\mathbb{R}^n, δ) with

$$\delta(x,y) = \max(x-y).$$

Proof.

$$F(v) = (d(v, v_1), \ldots, d(v, v_n)).$$

Message: Wo-Wait Flowshop distance functions are as hard as general semi-metrics.

Any n-point semi-metric (V, d) embeds isometrically into the semi-metric (\mathbb{R}^n, δ) with

$$\delta(x,y) = \max(x-y).$$

Proof.

$$F(v) = (d(v, v_1), \ldots, d(v, v_n)).$$

Message: Wo-Wait Flowshop distance functions are as hard as general semi-metrics.

Theorem (Main Result 1)

No-Wait Flowshop is as hard as ATSP, in particular APX-hard.

• Our functions are monotone.

- Our functions are monotone.
- Our functions are ε -Lipschitz (ε max. operation size)

- Our functions are monotone.
- Our functions are ε -Lipschitz (ε max. operation size)

- Our functions are monotone.
- Our functions are ε -Lipschitz (ε max. operation size), so...
- The number of machines depends on max. ATSP distance W.

- Our functions are monotone.
- Our functions are ε -Lipschitz (ε max. operation size), so...
- The number of machines depends on max. ATSP distance W.
- The total length of each job is $\Omega(nW) >> OPT$.

1 Reduction to ATSP

2 Encoding semi-metrics in No-Wait Flowshop

- Always choose the shortest representative.
- Stop after log *m* rounds and add an arbitrary Hamiltonian cycle.

- Always choose the shortest representative.
- Stop after log *m* rounds and add an arbitrary Hamiltonian cycle.

Theorem

This algorithm is a $O(\log m)$ -approximation.

Let r_1, \ldots, r_k be the representative vertices after log *m* rounds and $L(r_1), \ldots, L(r_k)$ their lengths.

Let r_1, \ldots, r_k be the representative vertices after log *m* rounds and $L(r_1), \ldots, L(r_k)$ their lengths.

The total length of jobs in r_i 's component is at least $mL(r_i)$, so on m machines they require at least $L(r_i)$ time to schedule.

Let r_1, \ldots, r_k be the representative vertices after log *m* rounds and $L(r_1), \ldots, L(r_k)$ their lengths.

The total length of jobs in r_i 's component is at least $mL(r_i)$, so on m machines they require at least $L(r_i)$ time to schedule.

This gives $OPT \ge \sum_i L(r_i)$.

Let r_1, \ldots, r_k be the representative vertices after log *m* rounds and $L(r_1), \ldots, L(r_k)$ their lengths.

The total length of jobs in r_i 's component is at least $mL(r_i)$, so on m machines they require at least $L(r_i)$ time to schedule.

This gives $OPT \ge \sum_i L(r_i)$.

The Hamiltonian cycle we add has at most this length.

Gilmore, Gomory (1964) $O(n \log n)$ algorithm for m = 2. Papadimitriou, Kanellakis (1980) Strongly NP-hard for $m \ge 4$. \star Röck, Schmidt (1983) $\lceil \frac{m}{2} \rceil$ -approximation. \star Röck (1984) Strongly NP-hard for $m \ge 3$. \star Sviridenko (2003) PTAS for m = O(1). Asadpour et al.(2010) $O(\log n / \log \log n)$ approximation via ATSP.

New result ATSP-hardness (for m = polyn(n)). New result $O(\log m)$ -approximation.

Problem (1)

Bridge the gap betweeen a PTAS and $O(\log m)$. O(1)-approximation for some range of m?

Problem (1)

Bridge the gap betweeen a PTAS and $O(\log m)$. O(1)-approximation for some range of m?

Problem (2)

Can you get $O(\log m / \log \log m)$ -approximation?

Problem (1)

Bridge the gap betweeen a PTAS and $O(\log m)$. O(1)-approximation for some range of m?

Problem (2)

Can you get $O(\log m / \log \log m)$ -approximation?

Problem (3)

Can you get $O(\log n / \log \log n)$ -approximation for ATSP à la Frieze, Galbiati, Maffioli?

Thanks!