# An LP-based $\frac{3}{2}$ -approximation algorithm for the graphic *s*-*t* path TSP

# Zhihan Gao

# Department of Combinatorics and Optimization University of Waterloo

July 29, 2013

# Graphic s-t path TSP

Let G be a connected graph with unit cost.

*s*-*t* path TSP: Find a minimum-size connected spanning subgraph of 2G with  $\{s, t\}$  as the odd-degree vertex set.

| Metric s-t path TSP |      |                                      |  |
|---------------------|------|--------------------------------------|--|
| Due to              | Year | Approx. Factor                       |  |
| J. A. Hoogeveen     | 1991 | $\frac{5}{3} \approx 1.666$          |  |
| H-C An et al (AKS)  | 2012 | $\frac{1+\sqrt{5}}{2} \approx 1.618$ |  |
| A. Sebő             | 2012 | $\frac{8}{5} = 1.6$                  |  |

| Graphic s-t path TSP  |      |                                                       |  |
|-----------------------|------|-------------------------------------------------------|--|
| Due to                | Year | Approx. Factor                                        |  |
| H-C An & D. Shmoys    | 2011 | $\left(\frac{5}{3}-\epsilon\right)$                   |  |
| T. Mömke & O.Svensson | 2011 | 1.586                                                 |  |
| M. Mucha              | 2012 | $\frac{19}{12} + \epsilon \approx 1.58333 + \epsilon$ |  |
| A. Sebő & J. Vygen    | 2012 | 1.5                                                   |  |

・ロト ・ 日 ト ・ 日 ト ・ 日

Find a spanning tree J of G.

#### Build Connectivity \_\_\_\_\_

Find min-size D-join F for the spanning tree J. D : wrong degree vertex set of J D-join: subgraph with D as odd-degree vertex set — Correct Degree

**Output**  $J \cup F$ .

Find a spanning tree J of G.

# **Build Connectivity**

Find min-size D-join F for the spanning tree J. D : wrong degree vertex set of J D-join: subgraph with D as odd-degree vertex set — Correct Degree

**Output**  $J \cup F$ .

### Question

- How to bound the min-size of D-join ?
- How to find a 'good' spanning tree for the algorithm?

• • • • • • • • • • •

# *s*-*t* Path TSP (on 2*G*): $x^*$ optimal solution

minimize :  $\sum_{x \in X} x(x)$ 

$$\begin{array}{rcl} & & & \geq_{e \in E} \times_{e} \\ \vdots & & x(\delta(\mathcal{W})) & \geq & |\mathcal{W}| - 1 & \forall \text{ partition } \mathcal{W} \text{ of } V \\ & & x(\delta(S)) & \geq & 2 & & \forall \emptyset \subsetneq S \subsetneq V, |S \cap \{s, t\}| \text{ even} \\ & & & 2 \geq & x_{e} & \geq 0 & & \forall e \in E \end{array}$$

# s-t Path TSP (on 2G): x\* optimal solution

 $\begin{array}{rll} \mbox{minimize}: & \sum_{e \in E} x_e \\ \mbox{subject to}: & x(\delta(\mathcal{W})) & \geq & |\mathcal{W}| - 1 & \forall \mbox{ partition } \mathcal{W} \mbox{ of } V \\ & x(\delta(S)) & \geq & 2 & \forall \emptyset \subsetneq S \subsetneq V, |S \cap \{s,t\}| \mbox{ even} \\ & 2 \geq & x_e & \geq 0 & \forall e \in E \end{array}$ 

*D*-join (Wrong-degree vertex set D for the spanning tree J) :

 $\begin{array}{rcl} \text{minimize} : & \sum_{e \in E} x_e \\ \text{subject to} : & x(\delta(S)) & \geq & 1 & \forall \text{ $D$-odd $S$} \\ & x_e & \geq & 0 & \forall e \in E \end{array}$ 

# s-t Path TSP (on 2G): x\* optimal solution

 $\begin{array}{rll} \mbox{minimize}: & \sum_{e \in E} x_e \\ \mbox{subject to}: & x(\delta(\mathcal{W})) & \geq & |\mathcal{W}| - 1 & \forall \mbox{ partition } \mathcal{W} \mbox{ of } V \\ & x(\delta(S)) & \geq & 2 & \forall \emptyset \subsetneq S \subsetneq V, |S \cap \{s, t\}| \mbox{ even} \\ & 2 \geq & x_e & \geq 0 & \forall e \in E \end{array}$ 

*D*-join (Wrong-degree vertex set D for the spanning tree J) :

 $\begin{array}{rll} \text{minimize} : & \sum_{e \in E} x_e \\ \text{subject to} : & x(\delta(S)) & \geq & 1 & \forall \text{ $D$-odd $S$} \\ & x_e & \geq & 0 & \forall e \in E \end{array}$ 

• Bad Cuts S:  $x^*(S) < 2$ , D - odd and aslo s, t-odd.

E SQA

## s-t Path TSP (on 2G): x\* optimal solution

 $\begin{array}{rll} \mbox{minimize}: & \sum_{e \in E} x_e \\ \mbox{subject to}: & x(\delta(\mathcal{W})) & \geq & |\mathcal{W}| - 1 & \forall \mbox{ partition } \mathcal{W} \mbox{ of } V \\ & x(\delta(S)) & \geq & 2 & \forall \emptyset \subsetneq S \subsetneq V, |S \cap \{s, t\}| \mbox{ even} \\ & 2 \geq & x_e & \geq 0 & \forall e \in E \end{array}$ 

*D*-join (Wrong-degree vertex set D for the spanning tree J) :

- $\begin{array}{rll} \text{minimize}: & \sum_{e \in E} x_e \\ \text{subject to}: & x(\delta(S)) & \geq & 1 & \forall \text{ $D$-odd $S$} \\ & x_e & \geq & 0 & \forall e \in E \end{array}$
- Bad Cuts S:  $x^*(S) < 2$ , D odd and aslo s, t-odd.
- If no bad cuts,  $\frac{1}{2}x^*$  fixes our spanning tree.

> = 990

#### Lemma

For a spanning *J* with wrong degree vertex set *D*, if a cut *S* is both D - odd and *s*, *t*-odd, then  $|J \cap \delta(S)|$  is **EVEN**.

**Idea:** Construct a spanning tree that has **ODD** number of edges at the potential Bad Cuts.

# Narrow Cuts: Potential Bad Cuts

- Bad Cuts S:  $x^*(S) < 2$ , D odd and s, t-odd.
- Narrow cut *S*:  $x^*(S) < 2$  and *s*, *t*-odd cut.
- Bad cut must be a narrow cut.
- Construct a spanning tree that has ODD number of edges at the narrow cuts.

# Narrow Cuts: Potential Bad Cuts

- Bad Cuts S:  $x^*(S) < 2$ , D odd and s, t-odd.
- Narrow cut *S*:  $x^*(S) < 2$  and *s*, *t*-odd cut.
- Bad cut must be a narrow cut.
- Construct a spanning tree that has ODD number of edges at the narrow cuts.

# AKS's Lemma on Narrow Cuts

Narrow cuts is a nested family.



### Lemma

Let *H* be the support graph of an optimal solution  $x^*$  of s-t path TSP LP. Then,  $H(\bigcup_{p \le i \le q} L_i)$  is connected.



## Lemma

Let *H* be the support graph of an optimal solution  $x^*$  of s-t path TSP LP. Then,  $H(\bigcup_{p \le i \le q} L_i)$  is connected.

•  $H(L_i)$  is connected, and  $\exists$  edge connecting  $L_i$  and  $L_{i+1}$  in H.



## Lemma

Let *H* be the support graph of an optimal solution  $x^*$  of s-t path TSP LP. Then,  $H(\bigcup_{p \le i \le q} L_i)$  is connected.

•  $H(L_i)$  is connected, and  $\exists$  edge connecting  $L_i$  and  $L_{i+1}$  in H.



## Lemma

Let *H* be the support graph of an optimal solution  $x^*$  of s-t path TSP LP. Then,  $H(\bigcup_{p \le i \le q} L_i)$  is connected.

•  $H(L_i)$  is connected, and  $\exists$  edge connecting  $L_i$  and  $L_{i+1}$  in H.



- Find the support graph H of  $x^*$ .
- 2 Find all narrow cuts and corresponding partition  $L_1, L_2, \ldots, L_{k+1}$ .
- So For each  $1 \le i \le k + 1$ , find a local spanning tree  $J_i$  on  $H(L_i)$ .
- Solution For each 1 ≤ *i* ≤ *k*, take an edge *e<sub>i</sub>* connecting each two consecutive *L<sub>i</sub>* and *L<sub>i+1</sub>*
- Let the spanning J be the union of the edge sets of previous twp steps.
- Let D be the wrong degree vertex set of J. Find the minimum size D-join F.
- **Output**  $J \dot{\cup} F$ .

- D-join:  $|F| \leq \frac{1}{2} \sum_{e \in E} x_e^*$ .
- Spanning tree:  $|J| = n 1 \leq \sum_{e \in E} x_e^*$ .

#### Theorem

The LP-based algorithm is a  $\frac{3}{2}$ -approximation for the graphic *s*-*t* path TSP.

# Thank you!

Image: A math a math