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The title could be "On a solution of a differential equation..." as
suggested by V. I. Arnold.



Six Painlevé equations

» Paul Painlevé (1863-1933) classified all second order
2

ODEs of the form ‘3732’ = F(g—i,y,x) with F rational in the
first two arguments whose solutions have no movable
singularities.

» Six new equations which cannot be solved in terms of
known special functions.

» The sixth Painlevé equation, PVI, is the most general of
them: PVI(«, 3,7, 9).
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Poncelet problem

» C and D are two smooth conics in CIP?

» Question: Is there a closed trajectory inscribed in C and
circumscribed about D?

» Poncelet Theorem: Let x € C be a starting point. The
Poncelet trajectory originating at x closes up after n steps
iff so does a Poncelet trajectory originating at any other
point of C.



Solution of Poncelet problem
Griffiths, P., Harris, J., On Cayley’s explicit solution to Poncelet’s porism (1978)

» Let C and D be symmetric 3 x 3 matrices defining the
conics C and D in CP?.

» E={(x,y) e CP! xCP':x € C,y e D*,x e y}isan
elliptic curve of the equation v? = det(D + uC).

» A closed Poncelet trajectory of length k exists for two
conics C and D iff the point (u,v) = (0, vdetD) is of order
k onE.

» kA (Qo) = 0 <=> 3f € L(—kP) with zero of order k at
Qo-



Hitchin's work
Hitchin, N. Poncelet polygons and the Painlevé equations (1992)

For two conics and a Poncelet trajectory of length k there is an
associated algebraic solution of PVI(3, -, 1. 3).

» Existence of the Poncelet trajectory of length k implies
kzg = 0. (Zo = 2W1 + 2W2 e )

» 2o = Ax(Qo), where A is the Abel map based at P,

» A function g(u,Vv) on the curve vZ = u(u — 1)(u — x)
having a zero of order k at Qg and a pole of order k at P,



Hitchin's work
Hitchin, N. Poncelet polygons and the Painlevé equations (1992)

The function

v

g(u,v)
g(U, _V)
has a zero of order k at Qg and a pole of order k at Qj and
no other zeros or poles.

s(u,v) =

v

ds has exactly two zeros away from Qg and Q.

v

These two zeros are paired by the elliptic involution.

Their u-coordinate as a function of x solves
1 1 1 3
PVI(5:—5 5+ 8)
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Picard solution to PVI (0, 0,0, 1)

Q

Q

» Transformed g satisfies:
(¢'(2))% = 9(z) (p(z) - 1) (p(z) - x).
» Define
Zg 1= 2W1C1 + 2W5Co.
> Zg = AOO(QO)
» Picard’s solution to PVI (0, 0,0, 3):

Yo(X) = ©(zo(X)).



Hitchin's solution of PVI(§, —%, £, 3)
Twistor spaces, Einstein metrics and isomonodromic deformations (1995)

o) 1(. 640
Y0) = 3280y (0) * 3 (1 + 95(0))

07 (1)01(v) — 26 ()6} (v) + 4mica[0] (V)(v) — 67 (V)]
27r292(0)01(1/)[9’1(1/) + 27icy01(v)] ’

» Here v = co7 + ¢ With 7 = %; and




Okamoto transformations ~ 1980

- a group of symmetries of PVI(«, 3,7, 9).

» Lemma (V. D., V. Shramchenko) Okamoto transformation
from PVI(0,0,0, ) to PVI(3,—5.3.5)

Yo - Picard’s solution

y - Hitchin’s solution

B Yo(Yo — 1)(¥o — X)
YO) = Yot S = 1y = yolyo =1




Our construction

u=P(z)

v

Zo = 2W1C1 + 2W2C2,  Zo = Axe(Qo),  Yo(X) = p(Z0(X)).
Differential of the third kind on the elliptic curve C:

Q(P) = QonQg(P) — 47TiC2w(P).

w(P) -holomorphic normalized differential on C in terms of
z has the form: w = 92,

2 has two simple poles at Qq et Qg which project to yo,
Picard's solution of PVI (0,0,0, ).

2 has two simple zeros at Pg et Pj which projecttoy,

Hitchin’s solution of PVI(3, -1, 1, 3).
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Qq,.0,+ as the Okamoto transformation

» Write the differential €2 in terms of the coordinate u:
w(P) 1 .

Q(P) = — — 4micow(P).

) w(Qo) LU(P)—yo 2w 2w(P)

here | = du .
where | = 4§, oy
y = u(P) is projection of zeros of Q iff

1 I
Y —vo 2w 2w(Qo)

» By differentiating the relation fF?o‘i w = C; + C7 with respect
to x we find the derivative 2:

dyo 1 w(Px)
ax — 4P,
_ 1uW?(Py) 1 |

" au2(Qo) [ Ty aw |




Qq,.0,+ as the Okamoto transformation

» Thus we get for the relationship betweeny and yy :

1 _ 4W2(Qo) dyo 1
Yy =Yo  w?(Px)dx = X-—Yo
» The holomorphic normalized differential in terms of the
u-coordinate has the form

du
w(P) = 2wy /u(u —1)(u —x)
» Therefore
(P)—# and w(Qp) = !
AT = 2wy /X (X — 1) A 2w1+/Yo(Yo — 1)(Yo — X)

» Okamoto transformation:

Yo(Yo — 1)(Yo — %)
x —1)y{ —Yolyo — 1)

y(X):yo+X(



Remark on &

Yo(X) = p(zo(x)) - the Picard solution to PVI (0,0,0, 3)

(ZO = 2W;C1 + 2W5C> Q(P) = QQ07Q0*(P) — 47TiC2w(P))



Normalization of the differential 2

v

Zo = 2W1Cq1 + 2W5Co.

v

Q(P) = QQo,Qo*(P) — 47TiC20J(P).

v

The constants ¢, and ¢, determine the periods of Q :

fﬂ = —4ric, 7{9 = 4ricy.
a b

Q) does not depend on the choice of a- and b-cycles.

Therefore our construction is global on the space of elliptic
two-fold coverings of CP! ramified above the point at
infinity.

v
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Schlesinger system (four points)

» Linear matrix system

AD) A2) AR)

do
EZA(U)CD’ Alu) = TRRRTIS BT

ueC,®eM(2,C),Acsl(2,C)
» Isomonodromy condition (Schlesinger system)

dA@®) [A(3), A(l)] .

dx X

dA2) [A(3), A(2)]
dx  x—-1 "

dA®) [A(3),A(1)] [A(3),A(2)]
dx X ox—1

AM) 4+ A@) 4+ AB) = const.



Solution to the Schlesinger system (four points)

» By conjugating, assume A + A 1 AG) = ( g _O)\ ) :

» Then the term Ay, is of the form:

(u-vy)

Arz(U) = Ku(u —1)(u—x)

» The zeroy as a function of x satisfies the

PV ((Zkgl) _r(ADY2, r(A@y2, 1= 2tf2(A(3))>

» For PVI(3,—%,%,3) X\ =—1/4. Our construction implies

App(u) = SEQ u(u(fl_)(ylj))_x)’ Pel, u=u(P).




Solution to the Schlesinger system (four points)

— du _ _ ; ;
> Letp(P) = =) a non-normalized holom. diff.
v _ 1 _ Yo 2
AL = _ZVOQ(POW(PO% pr = 1 (£2(Po))”
1 1—
A(122) = Z(l —Y0)2(P1)¢(P1), Bo = 4y0 (Q(P1)),
1 Y
A = 20— yo)2P)o(Pr). s = =2 (QP))’
» Then the following matrices solve the Schlesinger system
(A
AD .= i , i=1,2,3.
ihi i
~3 AD) it+9

» Eigenvalues of matrices A() are +1/4.

» cf. Kitaev, A., Korotkin, D. (1998); Deift, P, Its, A., Kapaeyv,
A., Zhou, X. (1999)



Generalization to hyperelliptic curves

u=P(2)

Let zg € Jac(L), zo=cy +CyB, and ng:l Aso(Q)) = 2o.
Define the differential

9
Q(P) =) Qqo+(P) — 4mi ch(P).
j=1

Let gj = u(Qj). Then
0q; 1

e =7 52(P)vi (P,

?(P) ngl,oqéj(u —0a)

- ) j = 1’ MR g
A(Q)) TTo—1.0 (G — da)




Normalization of the differential 2

9
QP) =) Qg o7 (P) — 4michw(P)
=1

where zo =c; +ciB  and Y7, A(Q) = 20

C1,Co € RY,

» The constant vectors ¢; = (€11, ...C1g)" and
c2 = (Co1y. -+, czg)t determine the periods of Q2 :

% Q:—47Ti02k Q:47I‘i01k.
ay by

»  does not depend on the choice of a- and b-cycles.



Schlesinger system (n points)

29+1

do
4o =AW, Au) = ,;

Al)
u-—u;’

where u € C, d(u) e M(2,C), AW esl(2,C).
» Schlesinger system for residue-matrices A() € sl(2, C):

HAU) [A(k)’ A(J)]

A 4 ARIFY) — Al0) — const
Oug Uk — Uj

» by removing the conjugation freedom assume

() _ (A O
= (3 0.



Solution to the Schlesinger system (n points)

» Let ¢p(P) = —3_ - a non-normalized holom. diff.

129 (u—uy)

» Use the differential Q to construct an analogue of Ay, in

the hyperelliptic case

Q(P) [To—1(u — da)
o(P) 1129 (u —up)

i=1

Arp(u) =

» Its residues at the simple poles:

g
A = 2(Pn)o(Pn) T] (un — 6a).

a=1

» Introduce the following quantities:

(1)



» The following matrices A() withi = 1,...,2g + 1 solve the
Schlesinger system

AD = ;

~1/4 0
(D) 1. ARIHY) — _A(®)
T N )

» cf. Kitaev, A., Korotkin, D. (1998); Deift, P, Its, A., Kapaey,
A., Zhou, X. (1999)

» Zeros of Q are zeros of Aj»(u) and are solutions of the
multidimensional Garnier system.



Back to Poncelet

n=2g9+2

Consider the case of a point zg with rational coordinates

C1,Co € Q9 with respect to the Jacobian of the hyperelliptic
curve of genus g. It corresponds to a periodic trajectory of a
billiard ordered game associated to g quadrics from a confocal
family in d = g + 1 dimensional space.

For billiard ordered games see V. Dragovi¢, M. Radnovi¢, JMPA
2006.



