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The title could be "On a solution of a differential equation..." as
suggested by V. I. Arnold.



Six Painlevé equations

◮ Paul Painlevé (1863-1933) classified all second order
ODEs of the form d2y

dx2 = F (dy
dx , y , x) with F rational in the

first two arguments whose solutions have no movable
singularities.

◮ Six new equations which cannot be solved in terms of
known special functions.

◮ The sixth Painlevé equation, PVI, is the most general of
them: PVI(α, β, γ, δ).
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Poncelet problem

◮ C and D are two smooth conics in CP2

◮ Question: Is there a closed trajectory inscribed in C and
circumscribed about D?

◮ Poncelet Theorem: Let x ∈ C be a starting point. The
Poncelet trajectory originating at x closes up after n steps
iff so does a Poncelet trajectory originating at any other
point of C.



Solution of Poncelet problem
Griffiths, P., Harris, J., On Cayley’s explicit solution to Poncelet’s porism (1978)

◮ Let C and D be symmetric 3 × 3 matrices defining the
conics C and D in CP2.

◮ E = {(x , y) ∈ CP1 × CP1 : x ∈ C, y ∈ D∗, x ∈ y} is an
elliptic curve of the equation v2 = det(D + uC).

◮ A closed Poncelet trajectory of length k exists for two
conics C and D iff the point (u, v) = (0,

√
det D) is of order

k on E .

◮ kA∞(Q0) ≡ 0 <=> ∃f ∈ L(−kP∞) with zero of order k at
Q0.



Hitchin’s work
Hitchin, N. Poncelet polygons and the Painlevé equations (1992)

For two conics and a Poncelet trajectory of length k there is an
associated algebraic solution of PVI(1

8 ,−1
8 ,

1
8 ,

3
8).

◮ Existence of the Poncelet trajectory of length k implies
kz0 ≡ 0. (z0 := 2w1

m1
k + 2w2

m2
k .)

◮ z0 = A∞(Q0), where A∞ is the Abel map based at P∞.

◮ A function g(u, v) on the curve v2 = u(u − 1)(u − x)
having a zero of order k at Q0 and a pole of order k at P∞



Hitchin’s work
Hitchin, N. Poncelet polygons and the Painlevé equations (1992)

◮ The function

s(u, v) =
g(u, v)

g(u,−v)

has a zero of order k at Q0 and a pole of order k at Q∗
0 and

no other zeros or poles.

◮ ds has exactly two zeros away from Q0 and Q∗
0.

◮ These two zeros are paired by the elliptic involution.

◮ Their u-coordinate as a function of x solves
PVI(1

8 ,−1
8 ,

1
8 ,

3
8).



Picard solution to PVI (0, 0, 0, 1
2)

◮ Transformed ℘ satisfies:
(℘′(z))2 = ℘(z) (℘(z)− 1) (℘(z)− x).

◮ Define
z0 := 2w1c1 + 2w2c2.

◮ z0 = A∞(Q0).
◮ Picard’s solution to PVI (0, 0, 0, 1

2):

y0(x) = ℘(z0(x)).



Hitchin’s solution of PVI(1
8 ,−1

8 ,
1
8 ,

3
8)

Twistor spaces, Einstein metrics and isomonodromic deformations (1995)
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◮ Here ν = c2τ + c1 with τ = w2
w1

; and
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θ4
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.



Okamoto transformations ∼ 1980

- a group of symmetries of PVI(α, β, γ, δ).

◮ Lemma (V. D., V. Shramchenko): Okamoto transformation
from PVI(0, 0, 0, 1

2) to PVI(1
8 ,−1

8 ,
1
8 ,

3
8) :

y0 - Picard’s solution

y - Hitchin’s solution

y(x) = y0 +
y0(y0 − 1)(y0 − x)

x(x − 1)y ′
0 − y0(y0 − 1)

.



Our construction

◮ z0 = 2w1c1 + 2w2c2, z0 = A∞(Q0), y0(x) = ℘(z0(x)).
◮ Differential of the third kind on the elliptic curve C:

Ω(P) = ΩQ0,Q∗

0
(P)− 4πic2ω(P).

◮ ω(P) -holomorphic normalized differential on C in terms of
z has the form: ω = dz

2w1
.

◮ Ω has two simple poles at Q0 et Q∗
0 which project to y0,

Picard’s solution of PVI (0, 0, 0, 1
2).

◮ Ω has two simple zeros at P0 et P∗
0 which project to y ,

Hitchin’s solution of PVI(1
8 ,−1

8 ,
1
8 ,

3
8).



ΩQ0,Q0∗ as the Okamoto transformation
◮ Write the differential Ω in terms of the coordinate u:

Ω(P) =
ω(P)

ω(Q0)

[

1
u(P)− y0

− I
2w1

]

− 4πic2ω(P).

where I =
∮

a
du

(u−y0)
√

u(u−1)(u−x)
.

y = u(P) is projection of zeros of Ω iff

1
y − y0

=
I

2w1
+ 4πic2ω(Q0).

◮ By differentiating the relation
∫ Q0

P∞

ω = c1 + c2τ with respect

to x we find the derivative dy0
dx :

dy0

dx
= −1

4
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=
1
4
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[

4πi c2 ω(Q0)−
1
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+

I
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]

.



ΩQ0,Q0∗ as the Okamoto transformation
◮ Thus we get for the relationship between y and y0 :

1
y − y0

= 4
ω2(Q0)

ω2(Px)

dy0

dx
+

1
x − y0

.

◮ The holomorphic normalized differential in terms of the
u-coordinate has the form

ω(P) =
du

2w1
√

u(u − 1)(u − x)
.

◮ Therefore

ω(Px) =
2

2w1
√

x(x − 1)
and ω(Q0) =

1

2w1
√

y0(y0 − 1)(y0 − x)
.

◮ Okamoto transformation:

y(x) = y0 +
y0(y0 − 1)(y0 − x)

x(x − 1)y ′
0 − y0(y0 − 1)

.



Remark on dy0
dx

y0(x) = ℘(z0(x)) - the Picard solution to PVI (0, 0, 0, 1
2)

dy0

dx
= −1

4
Ω(Px)

ω(Px )

ω(Q0)

(

z0 = 2w1c1 + 2w2c2 Ω(P) = ΩQ0,Q0∗(P)− 4πic2ω(P)
)



Normalization of the differential Ω

◮ z0 = 2w1c1 + 2w2c2.

◮ Ω(P) = ΩQ0,Q0∗(P)− 4πic2ω(P).

◮ The constants c1 and c2 determine the periods of Ω :

∮

a
Ω = −4πic2

∮

b
Ω = 4πic1.

◮ Ω does not depend on the choice of a- and b-cycles.
◮ Therefore our construction is global on the space of elliptic

two-fold coverings of CP1 ramified above the point at
infinity.



Schlesinger system (four points)

◮ Linear matrix system

dΦ
du

= A(u)Φ, A(u) =
A(1)

u
+

A(2)

u − 1
+

A(3)

u − x

u ∈ C,Φ ∈ M(2,C),A ∈ sl(2,C)
◮ Isomonodromy condition (Schlesinger system)

dA(1)

dx
=

[A(3),A(1)]

x
;

dA(2)

dx
=

[A(3),A(2)]

x − 1
;

dA(3)

dx
= − [A(3),A(1)]

x
− [A(3),A(2)]

x − 1
.

A(1) + A(2) + A(3) = const .



Solution to the Schlesinger system (four points)

◮ By conjugating, assume A(1) + A(2) + A(3) =

(

λ 0
0 −λ

)

.

◮ Then the term A12 is of the form:

A12(u) = κ
(u − y)

u(u − 1)(u − x)

◮ The zero y as a function of x satisfies the

PVI

(

(2λ− 1)2

2
, −tr(A(1))2, tr(A(2))2,

1 − 2tr(A(3))2

2

)

◮ For PVI(1
8 ,−1

8 ,
1
8 ,

3
8) λ = −1/4. Our construction implies

A12(u) =
Ω(P)

ω(P)

(u − y0)

u(u − 1)(u − x)
, P ∈ L, u = u(P).



Solution to the Schlesinger system (four points)
◮ Let φ(P) = du√

u(u−1)(u−x)
- a non-normalized holom. diff.

A(1)
12 = −1

4
y0Ω(P0)φ(P0), β1 := −y0

4
(Ω(P0))

2 ,

A(2)
12 =

1
4
(1 − y0)Ω(P1)φ(P1), β2 :=

1 − y0

4
(Ω(P1))

2 ,

A(3)
12 =

1
4
(x − y0)Ω(Px)φ(Px), β3 :=

x − y0

4
(Ω(Px))

2 .

◮ Then the following matrices solve the Schlesinger system

A(i) :=









−1
4 − βi

2 A(i)
12

−1
4

βi+β2
i

A(i)
12

1
4 + βi

2









, i = 1, 2, 3.

◮ Eigenvalues of matrices A(i) are ±1/4.
◮ cf. Kitaev, A., Korotkin, D. (1998); Deift, P., Its, A., Kapaev,

A., Zhou, X. (1999)



Generalization to hyperelliptic curves

Let z0 ∈ Jac(L), z0 = c1 + ct
2B, and

∑g
j=1 A∞(Qj) = z0.

Define the differential

Ω(P) =

g
∑

j=1

ΩQj Q∗

j
(P)− 4πi ct

2ω(P).

Let qj = u(Qj). Then

∂qj

∂uk
= −1

4
Ω(Pk )vj(Pk ),

where

vj(P) =
φ(P)

∏g
α=1,α6=j(u − qα)

φ(Qj)
∏g

α=1,α6=j(qj − qα)
, j = 1, . . . , g



Normalization of the differential Ω

Ω(P) =

g
∑

j=1

ΩQj Qτ

j
(P)− 4πi ct

2ω(P)

where z0 = c1 + ct
2B and

∑g
j=1 A∞(Qj) = z0;

c1, c2 ∈ Rg .

◮ The constant vectors c1 = (c11, . . . c1g)
t and

c2 = (c21, . . . , c2g)
t determine the periods of Ω :

∮

ak

Ω = −4πic2k

∮

bk

Ω = 4πic1k .

◮ Ω does not depend on the choice of a- and b-cycles.



Schlesinger system (n points)

dΦ
du

= A(u)Φ, A(u) =
2g+1
∑

j=1

A(j)

u − uj
,

where u ∈ C, Φ(u) ∈ M(2,C), A(j) ∈ sl(2,C).
◮ Schlesinger system for residue-matrices A(i) ∈ sl(2,C):

∂A(j)

∂uk
=

[A(k),A(j)]

uk − uj
; A(1)+· · ·+A(2g+1) = −A(∞) = const

◮ by removing the conjugation freedom assume

A(∞) =

(

λ 0
0 −λ

)

.



Solution to the Schlesinger system (n points)
◮ Let φ(P) = du

√

∏2g+1
i=1 (u−ui )

- a non-normalized holom. diff.

◮ Use the differential Ω to construct an analogue of A12 in
the hyperelliptic case

A12(u) =
Ω(P)

φ(P)

∏g
α=1(u − qα)

∏2g+1
j=1 (u − uj)

,

◮ Its residues at the simple poles:

A(n)
12 =

κ

4
Ω(Pn)φ(Pn)

g
∏

α=1

(un − qα). (1)

◮ Introduce the following quantities:

βn :=
1
4
Ω(Pn)

g
∑

j=1

vj(Pn)−
1
2
Ω(∞)A(n)

12 .



◮ The following matrices A(i) with i = 1, . . . , 2g + 1 solve the
Schlesinger system

A(i) :=









−1
4 − βi

2 A(i)
12

−1
4

βi+β2
i

A(i)
12

1
4 + βi

2









;

◮

A(1) + · · ·+ A(2g+1) = −A(∞) =

(

−1/4 0
0 1/4

)

.

◮ cf. Kitaev, A., Korotkin, D. (1998); Deift, P., Its, A., Kapaev,
A., Zhou, X. (1999)

◮ Zeros of Ω are zeros of A12(u) and are solutions of the
multidimensional Garnier system.



Back to Poncelet

n = 2g + 2

Consider the case of a point z0 with rational coordinates
c1, c2 ∈ Qg with respect to the Jacobian of the hyperelliptic
curve of genus g. It corresponds to a periodic trajectory of a
billiard ordered game associated to g quadrics from a confocal
family in d = g + 1 dimensional space.
For billiard ordered games see V. Dragović, M. Radnović, JMPA
2006.


