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We consider the Lie algebra cohomology of $5 with trivial
coefficients, H™($)2).

| Definition: for a (complex) Lie algebra g,
C"(g) = Homeont (A"g, C),
the differential d™: C™(g) — C"(g) acts as

dnc(gla R 7gn—|—1) —
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1<r<s<n+1

and
H"(g) = Kerd,,/Imd,,_1.]



The Lie algebra )5 is bigraded:

o = @(ﬁ2)pqa (92)pg = Cepg.

b,q

Accordingly, the cohomology is bigraded:
= D 5 (02).

TRIVIAL THEOREM. If p # q, then HJ, ($2) = 0 for all n.

Thus, we need to consider only the cohomology H; ($2)
which we will denote briefly as H[' (2).

The cohomology H.'(£)2) for small values of ¢ can be easily
calculated. Here are the results:

- 1, ifn=25
dImH—l(m):{o if n £ 2,5;
R 1, ifn=0,7
dlmHO(ﬁ?):{o if n£0,T7;

H;/($2) =0 for ¢ =1,2,3 and all n.



A short-living conjecture that H ($2) = 0 for ¢ > 0 was
disproved in 1972 by I. M. Gelfand, D. I. Kalinin and myself.
With the help of a computer of that epoch, we were able to
prove the following:

THEOREM.

n ] C forn="711,
H4(5§2)_{0 forn #7,11;

H'($2) =0 for all n,

and neither of HY($2), H{4($H2) can be zero for all n.



A breakthrough in computation of the cohomology of the
Lie algebra $o was achieved in 1976 by J. Perchik. His idea
was to replace the hard problem of computing cohomology by
the easier problem of computing the Euler characteristics. This
idea cannot be applied to our problem directly, since the Euler
characteristic of the complex {C} (92),d} is always zero. To
avoid this zero, one can replace the cohomology of the Lie alge-
bra $o by the relative cohomology of this Lie algebra modulo
s[(2) = Span(e_1.1,e00,€1,-1) C Ho.

[Definition. Let h be a Lie subalgebra of a Lie algebra g.
We define C"(g, ) as the space of those ¢ € C™(g) which are
annihilated by every element of f) and whose differential dc has
the same property. The cohomology H™(g,bh) of the complex
{C™(g,b),d} is the relative cohomology of g modulo b.]

Since 5[(2) ¢ (57)2)00, but 5[(2) C (57)2)0 = 4@0(57)2)]9(1,

pt+q=

the relative complex {C"($2,5((2)),d} as well as the relative
cohomology H"($2,5[(2)) do not keep the bigrading, but do
preserve a grading: H"($2,s((2)) = &,.H'(9H2,5[(2)).

The standard tools of the Lie algebra cohomology theory
make the problems of computing Hy, ($2) and Hj, (92,51(2))
equivalent.



THEOREM (Perchik) Let

P(t,z) = 11 (1 — tP2%);
—1<a<x
6 = a mod 2
—a—2<p3<a+2
(., 8) # (0,0)

in other words, P(t,x) is an infinite product

(1—tlz= (1 -tz 1)
(1—t2) (1—1¢2)
(1—t3x) (1—-t"t2) (1 —tz) (1—t32)
(1 —t7422)(1 —t22%)(1 — 22)(1 — t222)(1 — t*2?)

Then the Euler characteristic of the complex {C3, (92,51(2)), d}
equals half the coefficient at 29 (= tY2°9) in the series P(x,t).



q| E(@)| q|E(@)| a| Eq q E(q) q E(q)
~1 1126 31|53 173 | 80 3584 | 107 8541
0 2| 27 0| 54 145 | 81| —5935|108 | —1028485
1 0128 0|55 271 | 82| —21098 | 109 | —2151079
2 0120 —1156 62 | 83| —31806 | 110 | —3195064
3 030 —3157 A7 | 84| —40358 | 111 | —3758464
41 —1131 3158 —303| 85| —36595 | 112 | —3619783
5 032 —8|59| —428| 86| —2204 | 113 | —2444842
6 0| 33 9]60| —583| 87 6624 | 114 | —241084
71 —1134 0|61 —508| 88 44607 | 115 2909301
8 0035 10]62| —182| 89 82862 | 116 6509215
9 036 —3163 217 | 90| 114857 | 117 9863184
10 0| 37 2164 1027 | 91| 119528 | 118 | 12052883
11| —1(3%8| —9(65| 1252] 92 97775 | 119 | 12061060
12 039 —20|66]| 1775| 93 29235 | 120 9163196
13 040 —5|67| 1079 | 94| —64387 | 121 2834605
14| —11]41| —13]68 560 | 95 | —189286 | 122 | —6466360
15 1042 21169 | —1374| 96 | —295141 | 123 | —17871392
16| —1 |43 5070 | —2562 | 97 | —372236 | 124 | —29128258
17 144 | 54|71 ] —4303| 98| —360596 | 125 | —37864369
18 1|45 50 72| —4480 | 99 | —253826 | 126 | —40696075
19 0|46 | 24|73| —3613 | 100 | —23742 | 127 | —35201663
20 1047 ] =33 74| —920 | 101 | 296868 | 128 | —19167388
21| —2 (48| —47| 75| 3333|102 | 663644 | 129 7151485
29 049 | —82| 76| 7579 | 103 | 995744

23| —1[50| —79 |77 | 12288 | 104 | 1175649

24 3151 —4] 78| 12866 | 105 | 1123744

25| —2|52 5|79 | 11810 | 106 | 725381




We see from this table that the absolute value of E(q) be-
comes very large: within the table it reaches fourty million.
But it becomes more surprising when one looks at the loga-
rithmic graph of F/(q) shown in the next slide.
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CONJECTURE. For large values of q, the cohomology

Hy,(92,51(2))

18 concentrated around one dimension, or to adjacent dimen-
stons. With the growth of q, this dimension slowly grows.
When it 1s even, the Euler characteristic is positive; when it
becomes odd, the Euler characteristic becomes negative. In the
intermediate zone, the Euler characteristic passes through zero
and changes sign.

The total dimension of the cohomology grows exponentially
with the growth of q.

For ¢ = 4, the computations of Gelfand, Kalinin and my-
self show that the cohomology is concentrated in dimension 7.
However, no other computations of Hg, ($2,5[(2)) are known
today.

Still, there are some results concerning the cohomology of
the Lie algebra L1$2 C $2 spanned by e,, with p+q > 1. This
Lie algebra is bigraded, so there are complexes {C} (L1$2), d}
and the cohomology H, (L1£2). The table for the Euler char-
acteristics E(p, q) of these complexes is shown in the next slide.
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There exists a computation of the cohomology H, (L1$2)
for n = 0,1, 2,3, and the results fairly correspond to the four
alternating patches of positive and negative values of FE(p,q).

CONJECTURE. This holds for all n.

In conclusion, let me mention that the Euler characteris-
tics F(q) and E(p,q) of the two tables displayed are closely
related to each other. The actual formula is

E(q)=FE(¢,9)+E(q+1,q+1)+FE(qg—1,9+2)
—E(@—1,9+1)—E(q,q+1) — E(q,q +2).



