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A spherical polygon is a surface homeomorphic to the

closed disk, with several marked points on the boundary

called corners, equipped with a Riemannian metric of

constant curvature K = 1, such that the sides (arcs

between the corners) are geodesic, and the metric has

conical singularities at the corners.

A conical singularity is a point near which the length

element of the metric is

ds =
2α|z|α−1|dz|

1+ |z|2
,

where z is a local conformal coordinate. The number

2πα > 0 is the angle at the conical singularity. The

interior angle of our polygon is πα. These angles can

be arbitrarily large.
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Every polygon can be mapped conformally onto the

unit disk. We consider the problem of classification

up to isometry of polygons with prescribed angles and

prescribed corners.

By prescribed corners we mean that the images of the

corners on the unit circle are prescribed.

The necessary condition on the angles,∑
αj > n− 2,

follows from the Gauss–Bonnet formula. If 0 < αj < 1,

then we have existence and uniqueness (M. Troyanov,

1991, F. Luo and G. Tian, 1992).
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Spherical triangles were classified by F. Klein, 1890,
A. Eremenko, 2004, S. Fujimori et al, 2011.

If all αj are not integers, the necessary and sufficient
condition for the existence of a spherical triangle is

cos2α0 + cos2α1 + cos2α2 +2cosα0 cosα1 cosα2 < 1,

and the triangle is unique.

If α0 is an integer, then the necessary and sufficient
condition is that either α1+α2 or α1−α2 is an integer
m < α0, with m and α0 of opposite parity.

The triangle with an integer corner is not unique: there
is a 1-parametric family when only one angle is integer,
and a 2-parametric family when all angles are integer.
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Developing map. A surface D of constant curvature 1

is locally isometric to a region on the standard sphere S.

This isometry is conformal, has an analytic continuation

to the whole polygon, and is called the developing map

f : D → S.

We say that spherical polygons are equivalent if their

developing maps differ by a post-composition with a

fractional-linear transformation.

Let us choose the upper half-plane H as the conformal

model of our polygon, with n corners a0, . . . , an−1, and

choose an−1 = ∞. Accordingly, we sometimes denote

αn−1 as α∞. The other corners are real numbers.
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Then f : H → S is a meromorphic function mapping the
sides into great circles. By the Symmetry Principle, f

has an analytic continuation to a multi-valued function
in C \ {a0, . . . , an−1} whose monodromy is a subgroup
of PSU(2).

Such a function must be a ratio of two linearly inde-
pendent solutions of the Fuchsian differential equation

w′′ +
n−2∑
k=0

1− αk

z − ak
w′ +

P (z)∏
(z − ak)

w = 0,

where P is a real polynomial of degree n − 3 whose
top coefficient can be expressed in terms of the αj.
The remaining n − 3 coefficients of P are called the
accessory parameters. The monodromy group of this
equation must be conjugate to a subgroup of PSU(2).
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In the opposite direction, if a Fuchsian differential equa-

tion with real singularities and real coefficients has the

monodromy group conjugate to a subgroup of PSU(2),

then the ratio of two linearly independent solutions re-

stricted to H is a developing map of a spherical polygon.

Thus classification of spherical polygons with given an-

gles and corners is equivalent to the following problem:

For a Fuchsian equation with given real parameters

aj, αj, to find the real values of accessory parameters

for which the monodromy group of that equation is

conjugate to a subgroup of PSU(2). These values of

accessory parameters are in bijective correspondence

with the equivalence classes of spherical polygons.
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Spherical polygons with all integer angles. In this
case, the developing map is a real rational function with
real critical points. The multiplicities of the critical
points are αj − 1. Such functions have been studied
in great detail (A. Eremenko and A. Gabrielov, 2002,
2011, I. Scherbak, 2002, A. Eremenko, A. Gabrielov,
M. Shapiro, F. Vainshtein, 2006).

The necessary and sufficient condition on the angles is∑
(αj − 1) = 2d− 2, where d = deg f is an integer, and

αj ≤ d for all j. For given angles, there exist exactly
K(α0 − 1, . . . , αn−1 − 1) of the equivalence classes of
polygons, where K is the Kostka number: it is the
number of ways to fill in a table with two rows of length
d − 1 with α0 − 1 zeros, α1 − 1 ones, etc., so that the
entries are non-decreasing in the rows and increasing in
the columns.
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Polygons with two non-integer angles. Let α0 and

αn−1 be non-integer, while the rest of the angles αj are

integer.

Assuming a0 = 0 and an−1 = ∞ we conclude that the

developing map has the form

f(z) = zα
P (z)

Q(z)
,

where α ∈ (0,1) and P, Q are real polynomials.
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For this case, a necessary and sufficient condition on
the angles is the following

Theorem 1. Let

σ := α1 + . . .+ αn−2 − n+2.

a) If σ + [α0] + [αn−1] is even, then α0 − αn−1 is an
integer of the same parity as σ, and

|α0 − αn−1| ≤ σ.

b) If σ + [α0] + [αn−1] is odd, then α0 + αn−1 is an
integer of the same parity as σ, and

α0 + αn−1 ≤ σ.
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Finding all polygons with prescribed angles is equivalent

in this case to solving the equation

z(P ′Q− PQ′) + αPQ = R

with respect to real polynomials P and Q of degrees p

and q, respectively, where R is a given real polynomial

of degree p+ q. The degree of the map

Wα : (P,Q) 7→ z(P ′Q− PQ′) + αPQ

equals ( p+ q

p

)
(it is a linear projection of a Veronese variety), and one

can show that when all roots of R are non-negative, all

solutions (P,Q) ∈ W−1
α (R) are real.
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Enumeration of polygons with two adjacent non-

integer angles. An important special case is when a0
and an−1 are adjacent corners of the polygon, 2α0 and

2αn−1 are odd integers, while all other αj are integers.

Equivalence classes of such polygons are in bijective

correspondence with odd real rational functions with

all critical points real, given by

f(z) = g(
√
z),

where f is the developing map of our polygon and g is

a rational function as above.

13



By a deformation argument, this gives the following

Theorem 2. If the angles satisfy the necessary and

sufficient condition given above, and the corners a0 = 0

and an−1 = ∞ are adjacent, then there are exactly

E(2α0 − 1, α1 − 1, . . . , αn−2 − 1,2αn−1 − 1)

equivalence classes of polygons, where E(m0, . . . ,mn−1)

is the number of chord diagrams in H, symmetric with

respect to z 7→ −z, with the vertices 0 = a0 < a1 < . . . <

an−2 < an−1 = ∞ and −a1, . . . ,−an−2, and mj chords

ending at each vertex aj.

If a0 and an−1 are not adjacent, E gives an upper bound

on the number of equivalence classes of polygons.
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One can express E in terms of the Kostka numbers.

Proposition. Let m0 and mn−1 be even. Then

E(m0,m1, . . . ,mn−2,mn−1) = K(r,m1, . . . ,mn−2, s),

where positive integers r and s satisfy

r + s > m1 + . . .+mn−2, (1)

and can be defined as follows:

If µ := (m0 +mn−1)/2+m1 + . . .+mn−2 is even, then

r = m0/2+k, s = mn−1/2+k, where k is large enough,

so that (1) is satisfied.

If µ is odd, then r = (m0+mn−1)/2+ k+1, s = k, and

k is large enough, so that (1) is satisfied.
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Spherical quadrilaterals. Heun’s equation. In the

case n = 4 the Fuchsian equation for the developing

map is the Heun’s equation

w′′+
(
1− α0

z
+

1− α1

z − 1
+

1− α2

z − a

)
w′+

Az − λ

z(z − 1)(z − a)
w = 0,

where A can be expressed in terms of αj, and λ is the

accessory parameter.

We can place three singularities at arbitrary points, so

we choose a0 = 0, a1 = 1, a2 = a, a3 = ∞.

The condition that the monodromy belongs to PSU(2)

is equivalent to an equation of the form F (a, λ) = 0.

This equation is algebraic if at least one or the angles

is integer.
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Theorem 2 in the case of quadrilaterals with two integer
and two non-integer angles specializes to the following

Theorem 3. The number of classes of quadrilaterals
with two integer and two non-integer angles is at most

min{α1, α2, k +1},

where

k +1 =

{
(α1 + α2 − |α0 − α3|)/2 in case a)
(α1 + α2 − α0 − α3)/2 in case b).

If a > 0 we have equality.

Here cases a) (when α0 − α3 is integer) and b) (when
α0+α3 is integer) are as in Theorem 1. Condition a > 0
means that the corners a1 and a2 with integer angles
are adjacent.
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Quadrilaterals with non-adjacent integer angles.

Let δ = max(0, α1 + α2 − [α0]− [α3])/2.

Theorem 4. The number of equivalence classes of

quadrilaterals with non-adjacent corners a1 and a2, with

integer angles α1 and α2, is at least

min{α1, α2, k +1} − 2
[
1

2
min {α1, α2, δ}

]
, (2)

where k is the same as in Theorem 3.

Notice that in case b) of Theorems 1 and 3, the lower

bound (2) becomes 0 when min{α1, α2, k + 1} is even

and 1 if min{α1, α2, k +1} is odd.
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Nets. The developing map is a local homeomorphism,

except at the corners, of a closed disk D to the standard

sphere S. The sides are mapped to great circles. These

great circles define a partition (cell decomposition) of

the sphere. Taking the f-preimage of this partition, and

adding vertices corresponding to the integer corners,

we obtain a cell decomposition of D which is called a

net. Two nets are considered equivalent if they can

be mapped to each other by an orientation-preserving

homeomorphism of the disk, respecting labeling of the

corners.

It is easy to see that a net, together with the partition

of the sphere by the great circles, define the polygon

completely.
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Fig. 3. Primitive nets, two opposite integer corners.
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Fig. 4. Pseudo-diagonal, two opposite integer corners.
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Fig. 5. Non-uniqueness, two opposite integer corners.
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Fig. 6. A chain of nets, two opposite integer corners.
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Quadrilaterals with three non-integer angles.

Suppose that α3 is integer while the rest of the angles

are not. The necessary and sufficient condition for the

existence of a quadrilateral with the given angles is the

same as in the case of triangles, and the number of

quadrilaterals with the given angles is at least

α3 − 2

[
min

(
α3

2
,
[α1] + 1

2
,
δ +1

4

)]
where δ = max(0, [α1] + α3 − [α0]− [α2]).
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Fig. 7. Partition of the Riemann sphere by three great

circles.
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Fig. 8. Primitive nets, three non-integer corners.
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Fig. 9. Primitive nets, three non-integer corners.
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Fig. 10. A chain of nets, three non-integer corners.
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Fig. 11. Pseudo-diagonal, three non-integer corners.
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a) b)

Fig. 12. Partition of the Riemann sphere by four great

circles (two views).
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Fig. 13. Primitive nets, four non-integer corners.
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Fig. 14. Pseudo-diagonal, four non-integer corners.
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Fig. 15. Partition of the Riemann sphere by

non-generic four great circles.
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Fig. 16. Some nets for non-generic four great circles.
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Fig. 17. Pseudo-diagonal for non-generic four great

circles.
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non-geodesic circles.
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