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Motivation: Ergodic Hypothesis

Let H : R2n → R be a smooth function, (q,p) ∈ Rn × Rn. Let XH be the
Hamiltonian flow associated to H.{

q̇ = ∂pH
ṗ = −∂qH

(1)

Let SE = {(q,p) ∈ T ∗M : H(q,p) = E} be an energy surface.

Ergodic Hypothesis (Boltzmann, Maxwell) Is a generic Hamiltonian
flow XH on a generic energy surface SE ergodic?

Numerical doubts (Fermi-Pasta-Ulam) Chains of nonlinear springs
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ṗ = −∂qH

(1)

Let SE = {(q,p) ∈ T ∗M : H(q,p) = E} be an energy surface.

Ergodic Hypothesis (Boltzmann, Maxwell) Is a generic Hamiltonian
flow XH on a generic energy surface SE ergodic?

Numerical doubts (Fermi-Pasta-Ulam) Chains of nonlinear springs

V. Kaloshin (University of Maryland) Arnold diffusion November 24, 2014 3 / 22



Motivation: Ergodic Hypothesis

Let H : R2n → R be a smooth function, (q,p) ∈ Rn × Rn. Let XH be the
Hamiltonian flow associated to H.{

q̇ = ∂pH
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ün = k(un+1 − un)− k(un − un−1) + α(un+1 − un)2 + α(un − un−1)2

the α-term — nonlinearity. Most “small” solutions are almost periodic!
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Quasiergodic Hypothesis

KAM theory Each nearly integrable systems has collections of
invariant tori of positive measure =⇒ no ergodicity!

Quasiergodic Hypothesis (Birkhoff, Ehrenfest) Does a generic
Hamiltonian flow on a generic energy surface SE have a dense orbit?
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Integrable systems & action-angles coordinates

Let H : R2n → R be a Hamiltonian, ϕ ∈ Tn be angle, I ∈ Rn be action.

A Hamiltonian system is Arnold-Liouville integrable if for an open set
U ⊂ Rn there exists a symplectic map Φ : Tn × U → R 2n s. t.
H ◦ Φ(ϕ, I) depends only on I and{

ϕ̇ = ∂I(H ◦ Φ)(I) = ω(I),
İ = 0.

(ϕ, I)–action-angle coordinates

In particular, Φ(Tn × U) is foliated by invariant n-dim’l tori & on each
torus Tn the flow is linear.
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Integrable systems

Newtonial two body problem.

Pendulum H = I2

2 − cos 2πϕ, (ϕ, I) ∈ T ∗T = T× R.

Harmonic oscillator q̈ = −kq or H = p2

2 + kq2

2 .
Motion in a central force field q̈ = F (‖q‖)q.
Newtonian two center problem.
Lagrange’s top, Kovaleskaya’s top, Euler top.
Toda lattice: chain · · · < x0 < x1 < . . . with the neighbor
interaction

∑
i exp(xi − xi+1)

Calogero-Moser system: chain of harmonic oscillators with a
neighbor repulsive interaction.
A geodesic flow on an n-dim’l ellipsoid with different main axes.
A geodesic flow on a surface of revolution.
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Arnold diffusion

Arnold, 63: Let (ϕ, I) ∈ T ∗Tn = Tn × Rn, t ∈ T.

(weak form) Does there exist a real instability in many-dimensional
problems of perturbation theory when the invariant tori do not
divide the phase space? More precisely, for a generic perturbation
εH1(ϕ, I, t) the Hamiltonian

Hε(ϕ, I, t) = H0(I) + εH1(ϕ, I, t)

has an orbit whose action component “travels” in action space, in
particular, maxt ‖I(t)− I(0)‖ = O(1).

(strong form) For any two open sets U,U ′ ⊂ Bn the Hamiltonian
Hε(ϕ, I, t) has an orbit whose action component “travels” from U to
U ′, i.e. I(0) ∈ U and I(T ) ∈ U ′ for some T > 0.
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Nearly integrable systems in dimension 2

Let H0(I) = I 2

2 . Time one map (ϕ, I)→ (ϕ+ I, I) (mod 1).

Let Hε(ϕ, I, t) = H0(I) + εH1(ϕ, I, t). The model time one map

fε : (ϕ, I)→ (ϕ′, I′) = (ϕ+ I′, I + ε sin 2πϕ) (mod 1).
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KAM Theorem, obstacles to instability

Let H0(I) have non-degenerate Hessian, e.g. H0(I) =
∑

I2
j /2.

KAM Theorem Let Hε(ϕ, I, t) = H0(I) + εH1(ϕ, I, t) be a smooth
perturbation. Then with probability 1−O(

√
ε) has an initial condition in

Tn × Bn × T having a quasiperiodic orbit. Moreover, Tn × Bn × T with
certain neighborhood of rational lines deleted is laminated by
invariant (n + 1)-dimensional tori, one for each diophantine ω.
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The heuristic picture

In (2n + 1)-dimensional space there are (n + 1)-dimensional tori.
For n = 1 they confine orbits!
For n > 1 they do not!
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A strong from of Arnold diffusion

Let H0(I) be smooth and strictly convex, I ∈ Bn.

The First Main Result For any γ > 0 & a generic smooth perturbation
εH1(φ, I, t) the Hamiltonian

Hε(ϕ, I, t) = H0(I) + εH1(ϕ, I, t)

has an orbit (ϕε, Iε, t)(t) which is γ-dense in Tn × Bn × T. Namely,
γ-neighbourhood of ∪t (ϕε, Iε, t)(t) contains Tn × Bn × T.

[K-Zhang, 12] n=2 (arxiv)
In 2002 a version of this result was announced by Mather.
There is an annoucement of Cheng.

[K-Zhang, 14] n=3 (my webpage)

[K-Zhang, 14] n > 3, progress (arxiv)
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A weak form of quasiergodic hypothesis

Let H0(I) be smooth and strictly convex, I ∈ B2.

The Second Main Result [Guardia-K] For any γ > 0 & a dense set of
perturbations εH1 the Hamiltonian Hε(ϕ, I, t) = H0(I) + εH1(ϕ, I, t) has
an orbit (ϕε, Iε, t)(t) accumulating to all KAM tori and, therefore,

Leb
{
∪t (ϕε, Iε, t)(t)

}
Leb{T2 × B2 × T}

> 1− γ.

A weak form of Quasiergodict hypothesis: there exists an orbit dense
in a set of almost maximal measure.

Byproduct: KAM tori are Lyapunov unstable!
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Instabilities in the Asteroid Belt

.
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Instabilities in the Asteroid Belt

J. Wisdom,83, Chaotic Behavior & the Origin of the 3/1 Kirkwood Gaps

Fejoz-Guardia-K-Roldan (to appear in J of the EMS)
Unstable orbits exist in the 3 : 1 Kirkwood gap.
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Diffusion conjecture for Arnold’s example
Diffusion conjecture Let

Hε =
I2

2︸ ︷︷ ︸
harm oscillator

+

(
p2

2
+ cos q

)
︸ ︷︷ ︸

pendulum

+εH1(ϕ, I,q,p, t), ϕ,q, t ∈ T, I,p ∈ R,

where H1 is a generic perturbation. Let Lebε be the norm Lebesgue
measure on the

√
ε-ball around 0. Then I(−t ·ln ε

ε2 ) converges to a
diffusion process wrt Leb√ε.

Chirikov, ... , Guzzo
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Stochastic Aspects of Arnold diffusion

Model Problem Let

f0 : (ϕ, I)→ (ϕ+ I + ε cosϕ, I + ε cosϕ),

f1 : (ϕ, I)→ (ϕ+ I + ε sinϕ, I + ε sinϕ),

be a pair of standard maps.

Consider random composition of these maps

fωn ◦ fωn−1 ◦ · · · ◦ fω1(ϕ0, I0) = (ϕn, In).

Theorem (joint work with O. Castejon) For n ∼ ε−2 such compositions
satisfy the Central Limit Theorem, i.e.

In − I0 → N (0, σ),

where N (0, σ) is a normal random variable with some variance σ > 0.
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Diffusion mechanism

(Mañé 90s) periodic orbit1  periodic orbit2  periodic orbit3 . . .
(Arnold, Gallavotti, Lochak, ... 60s-80s) whiskered KAM torus 1  
whiskered KAM torus2  whiskered KAM torus3  . . .
(Mather, Bernard, Cheng 90-00s) Cantor torus1  Cantor
torus2  Cantor torus3  . . .
Find invariant sets inside Normally Hyperbolic Invariant Cylinders
w. transverse invariant manifolds
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Preprints contributing to the talk

P. Bernard., V. Kaloshin, K. Zhang, Arnold diffusion in arbitrary
degrees of freedom and crumpled 3-dimensional normally
hyperbolic invariant cylinders, arXiv:1112.2773v Dec 2011, 58pp.

V. Kaloshin, K. Zhang, A strong form of Arnold diffusion for two
and a half degrees of freedom, arXiv:1212.1150 [math.DS] Dec
2012, 208pp.;

J. Fejoz, M. Guardia, V. Kaloshin, P. Roldan, Kirkwood gaps and
diffusion along mean motion resonances in the restricted planar
three-body problem, to appear in J of European Math Soc.

V. Kaloshin, K. Zhang, Arnold diffusion for three and a half
degrees of freedom, April 2014, 25pp.;

V. Kaloshin, K. Zhang, Dynamics of the dominant Hamiltonian,
with applications to Arnold diffusion, October 2014, 75pp.;

M. Guardia, V. Kaloshin, Orbits of nearly integrable systems
accumulating to KAM tori, preprint, 2014, 112pp. .

O. Castejon, V. Kaloshin, Random iteration of cylinder maps,
preprint, 2014, 53pp. .
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