Arnold diffusion for convex nearly integrable

systems

V. Kaloshin

November 24, 2014

V. Kaloshin (University of Maryland) Arnold diffusion November 24, 2014 1/22



Plan of the talk

@ Motivation: Ergodic and quasiergodic hypothesis.

V. Kaloshin (University of Maryland) Arnold diffusion November 24, 2014 2/22



Plan of the talk

@ Motivation: Ergodic and quasiergodic hypothesis.
@ Nearly integrable systems and the problem of Arnold diffusion

V. Kaloshin (University of Maryland) Arnold diffusion November 24, 2014 2/22



Plan of the talk

@ Motivation: Ergodic and quasiergodic hypothesis.
@ Nearly integrable systems and the problem of Arnold diffusion
@ Results in 3, 4, and more degrees of freedom

V. Kaloshin (University of Maryland) Arnold diffusion November 24, 2014 2/22



Plan of the talk

@ Motivation: Ergodic and quasiergodic hypothesis.

@ Nearly integrable systems and the problem of Arnold diffusion
@ Results in 3, 4, and more degrees of freedom

@ Indication of Arnold diffusion in the Solar system

V. Kaloshin (University of Maryland) Arnold diffusion November 24, 2014



Plan of the talk

@ Motivation: Ergodic and quasiergodic hypothesis.

@ Nearly integrable systems and the problem of Arnold diffusion
@ Results in 3, 4, and more degrees of freedom

@ Indication of Arnold diffusion in the Solar system

@ Stochastic aspects of Arnold diffusion
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Motivation: Ergodic Hypothesis

Let H : R2" — R be a smooth function, (g, p) € R"” x R". Let Xy be the
Hamiltonian flow associated to H.
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Let Se ={(q,p) € T*M : H(q, p) = E} be an energy surface.
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flow Xy on a generic energy surface Sg ergodic?

V. Kaloshin (University of Maryland) Arnold diffusion

November 24, 2014 3/22



Motivation: Ergodic Hypothesis

Let H : R2" — R be a smooth function, (g, p) € R"” x R". Let Xy be the
Hamiltonian flow associated to H.

9= OpH
{‘.’ P (1)
Let Se ={(q,p) € T*M : H(q, p) = E} be an energy surface.

Ergodic Hypothesis (Boltzmann, Maxwell) Is a generic Hamiltonian
flow Xy on a generic energy surface Sg ergodic?

Numerical doubts (Fermi-Pasta-Ulam) Chains of nonlinear springs

V. Kaloshin (University of Maryland) Arnold diffusion November 24, 2014 3/22



Motivation: Ergodic Hypothesis

Let H : R2" — R be a smooth function, (g, p) € R"” x R". Let Xy be the
Hamiltonian flow associated to H.

p = —aqH
Let Se ={(q,p) € T*M : H(q, p) = E} be an energy surface.

Ergodic Hypothesis (Boltzmann, Maxwell) Is a generic Hamiltonian
flow Xy on a generic energy surface Sg ergodic?

Numerical doubts (Fermi-Pasta-Ulam) Chains of nonlinear springs

u u
2 n+l

OV IO -8A\ -0

Un = K(Upt1 — Un) — k(Un — Up—1)
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Motivation: Ergodic Hypothesis

Let H : R2" — R be a smooth function, (g, p) € R"” x R". Let Xy be the
Hamiltonian flow associated to H.

p = —aqH
Let Se ={(q,p) € T*M : H(q, p) = E} be an energy surface.

Ergodic Hypothesis (Boltzmann, Maxwell) Is a generic Hamiltonian
flow Xy on a generic energy surface Sg ergodic?

Numerical doubts (Fermi-Pasta-Ulam) Chains of nonlinear springs

u u
2 n+l

OV IO -8A\ -0

Un - k(u,-H_‘] - Un) - k(Un - Un_‘]) + OJ(Un+1 - Un)2 + Oé(Un - Un_1 )2
the a-term — nonlinearity.

V. Kaloshin (University of Maryland) Arnold diffusion November 24, 2014 4/22



Motivation: Ergodic Hypothesis

Let H : R2" — R be a smooth function, (g, p) € R"” x R". Let Xy be the
Hamiltonian flow associated to H.

p = —8qH
Let Se ={(q,p) € T*M : H(q, p) = E} be an energy surface.

Ergodic Hypothesis (Boltzmann, Maxwell) Is a generic Hamiltonian
flow Xy on a generic energy surface Sg ergodic?

Numerical doubts (Fermi-Pasta-Ulam) Chains of nonlinear springs

u u
2 n+l

OV IO -8A\ -0

Un = k(u,-H_‘] — Un) — k(Un - Un_‘]) + OJ(Un+1 - Un)2 + Oé(Un — Un_1 )2
the a-term — nonlinearity. Most “small” solutions are almost periodic!
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Quasiergodic Hypothesis

KAM theory Each nearly integrable systems has collections of
invariant tori of positive measure = no ergodicity!
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Quasiergodic Hypothesis

KAM theory Each nearly integrable systems has collections of
invariant tori of positive measure = no ergodicity!

a)

Quasiergodic Hypothesis (Birkhoff, Ehrenfest) Does a generic
Hamiltonian flow on a generic energy surface Sg have a dense orbit?
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ORBITS
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Integrable systems & action-angles coordinates

Let H: R?" — R be a Hamiltonian, ¢ € T” be angle, / € R" be action.
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Integrable systems & action-angles coordinates

Let H: R?" — R be a Hamiltonian, ¢ € T” be angle, / € R" be action.

A Hamiltonian system is Arnold-Liouville integrable if for an open set
U c R" there exists a symplecticmap ¢ : T x U — R?"s. t.
H o ®(¢p, l) depends only on / and

-0 (v, )—action-angle coordinates

{@ = 0(Ho @)(1) = w()),

In particular, ®(T" x U) is foliated by invariant n-dim’l tori & on each
torus T" the flow is linear.
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A Hamiltonian system is Arnold-Liouville integrable if for an open set
U c R" there exists a symplecticmap ¢ : T x U — R?"s. t.
H o ®(¢p, l) depends only on / and

-0 (v, —action-angle coordinates

{@ = 0(Ho @)(1) = w()),

In particular, ®(T"” x U) is foliated by invariant n-dimensional tori and
on each torus T" the flow is linear.
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Integrable systems

@ Newtonial two body problem.

@ Pendulum H = g —cos22myp, (o, 1) e T"T =T x R.
@ Harmonic oscillator g = —kq or H = %2 + kqu.

@ Motion in a central force field g = F(]|q||)q.

@ Newtonian two center problem.

@ Lagrange’s top, Kovaleskaya'’s top, Euler top.

o

Toda lattice: chain - -+ < xp < xq < ... with the neighbor
interaction > ; exp(X; — Xjt+1)
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Integrable systems

Newtonial two body problem.
Pendulum H = g —cos2mp, (o, 1) e T"T =T x R.

Harmonic oscillator g = —kg or H = %2 + kqu.

Motion in a central force field g = F(||q||)q.

Newtonian two center problem.

Lagrange’s top, Kovaleskaya'’s top, Euler top.

Toda lattice: chain - -+ < xp < xq < ... with the neighbor
interaction > ; exp(X; — Xjt+1)

@ Calogero-Moser system: chain of harmonic oscillators with a
neighbor repulsive interaction.
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Integrable systems

Newtonial two body problem.
Pendulum H = g —cos2mp, (o, 1) e T"T =T x R.

Harmonic oscillator g = —kg or H = %2 + kqu.

Motion in a central force field g = F(||q||)q.

Newtonian two center problem.

Lagrange’s top, Kovaleskaya'’s top, Euler top.

Toda lattice: chain - -+ < xp < xq < ... with the neighbor

interaction > ; exp(X; — Xjt+1)

@ Calogero-Moser system: chain of harmonic oscillators with a
neighbor repulsive interaction.

@ A geodesic flow on an n-dim’l ellipsoid with different main axes.

@ A geodesic flow on a surface of revolution.
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Arnold diffusion

Arnold, 63: Let (p,/) € T*T" =T" x R", t € T.
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Arnold diffusion

Arnold, 63: Let (p,/) € T*T" =T" x R", t € T.

@ (weak form) Does there exist a real instability in many-dimensional
problems of perturbation theory when the invariant tori do not
divide the phase space? More precisely, for a generic perturbation
eHi(p, 1, t) the Hamiltonian

HE(SOa /7 t) = HO(I) + EH1 (907 /7 t)

has an orbit whose action component “travels” in action space, in
particular, max; ||/(t) — I(0)| = O(1).
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Arnold, 63: Let (p,/) € T*T" =T" x R", t € T.

@ (weak form) Does there exist a real instability in many-dimensional
problems of perturbation theory when the invariant tori do not
divide the phase space? More precisely, for a generic perturbation
eHi(p, 1, t) the Hamiltonian

HE(SOa /7 t) = HO(I) + EH1 (907 /7 t)

has an orbit whose action component “travels” in action space, in
particular, max; ||/(t) — I(0)| = O(1).

@ (strong form) For any two open sets U, U’ C B" the Hamiltonian
H-(¢, I, t) has an orbit whose action component “travels” from U to
U’,i.e. I(0) e Uand I(T) € U’ forsome T > 0.
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Nearly integrable systems in dimension 2

Let Ho(/) = & Time one map (¢, 1) = (» + 1, 1) (mod 1).
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Nearly integrable systems in dimension 2

Let Ho(/) = & Time one map (¢, 1) = (» + 1, 1) (mod 1).
Let Ho(, I, t) = Ho(l) + cHi (e, I, t). The model time one map
f.:(o, )= (¢, 1)=(p+ 1, 1+esin2rp) (mod 1).
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KAM Theorem, obstacles to instability

i PR
Let Ho(/) have non-degenerate Hessian, e.g. Ho(/) = >_ I7/2.
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KAM Theorem, obstacles to instability

i PR
Let Ho(/) have non-degenerate Hessian, e.g. Ho(/) = >_ I7/2.
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KAM Theorem Let H.(p, I, t) = Ho(I) + eHi(p, I, t) be a smooth
perturbation. Then with probability 1 — O(,/) has an initial condition in
T" x B" x T having a quasiperiodic orbit. Moreover, T” x B" x T with
certain neighborhood of rational lines deleted
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KAM Theorem, obstacles to instability

Let Ho(/) have non-degenerate Hessian, e.g. Ho(/) = 3= ?/2.
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KAM Theorem Let H.(p, I, t) = Ho(I) + eHi(p, I, t) be a smooth
perturbation. Then with probability 1 — O(,/) has an initial condition in
T" x B" x T having a quasiperiodic orbit. Moreover, T” x B" x T with
certain neighborhood of rational lines deleted is laminated by
invariant (n + 1)-dimensional tori, one for each diophantine w.
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The heuristic picture
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In (2n + 1)-dimensional space there are (n + 1)-dimensional tori.
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In (2n + 1)-dimensional space there are (n + 1)-dimensional tori.
For n = 1 they confine orbits!

V. Kaloshin (University of Maryland) Arnold diffusion November 24, 2014 14 /22



The heuristic picture

-] ty 5
el %
S :‘:\
= o
<
=
(0,1,0)
o ® &
r
% %
=

In (2n + 1)-dimensional space there are (n + 1)-dimensional tori.
For n = 1 they confine orbits!
For n > 1 they do not!
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A strong from of Arnold diffusion

Let Hy(/) be smooth and strictly convex, / € B".

The First Main Result For any v > 0 & a generic smooth perturbation
eHi (¢, I, t) the Hamiltonian

He(§07 Ia t) = HO(I) + €H1 (@7 Ia t)

has an orbit (¢, I, t)(t) which is y-dense in T" x B" x T. Namely,
~-neighbourhood of U; (e, I, t)(t) contains T"” x B" x T.

15/22

V. Kaloshin (University of Maryland) Arnold diffusion November 24, 2014



A strong from of Arnold diffusion

Let Hy(/) be smooth and strictly convex, / € B".

The First Main Result For any v > 0 & a generic smooth perturbation
eHi (¢, I, t) the Hamiltonian

He(§07 Ia t) = HO(I) + €H1 (@7 Ia t)

has an orbit (¢, I, t)(t) which is y-dense in T" x B" x T. Namely,
~-neighbourhood of U; (e, I, t)(t) contains T"” x B" x T.

[K-Zhang, 12] n=2 (arxiv)

V. Kaloshin (University of Maryland) Arnold diffusion November 24, 2014 15/22



A strong from of Arnold diffusion

Let Hy(/) be smooth and strictly convex, / € B".

The First Main Result For any v > 0 & a generic smooth perturbation
eHi (¢, I, t) the Hamiltonian

He(§07 Ia t) = HO(I) + 6H1 (@7 Ia t)

has an orbit (¢, I, t)(f) which is y-dense in T x B" x T. Namely,
~-neighbourhood of U; (e, I, t)(t) contains T"” x B" x T.

[K-Zhang, 12] n=2 (arxiv)
In 2002 a version of this result was announced by Mather.

V. Kaloshin (University of Maryland) Arnold diffusion November 24, 2014 15/22



A strong from of Arnold diffusion

Let Hy(/) be smooth and strictly convex, / € B".

The First Main Result For any v > 0 & a generic smooth perturbation
eHi (¢, I, t) the Hamiltonian

He(§07 Ia t) = HO(I) + eH; (@7 Ia t)
has an orbit (¢, I, t)(f) which is y-dense in T x B" x T. Namely,
~-neighbourhood of U; (e, I, t)(t) contains T"” x B" x T.

[K-Zhang, 12] n=2 (arxiv)
In 2002 a version of this result was announced by Mather.
There is an annoucement of Cheng.

V. Kaloshin (University of Maryland) Arnold diffusion November 24, 2014 15/22



A strong from of Arnold diffusion

Let Hy(/) be smooth and strictly convex, / € B".
The First Main Result For any v > 0 & a generic smooth perturbation
eHi (¢, I, t) the Hamiltonian

He(§07 I? t) = HO(I) + 6H1 (@7 Ia t)
has an orbit (¢, I, t)(f) which is y-dense in T x B" x T. Namely,
~-neighbourhood of U; (e, I, t)(t) contains T"” x B" x T.

[K-Zhang, 12] n=2 (arxiv)
In 2002 a version of this result was announced by Mather.
There is an annoucement of Cheng.

[K-Zhang, 14] n=3 (my webpage)

V. Kaloshin (University of Maryland) Arnold diffusion November 24, 2014 15/22



A strong from of Arnold diffusion

Let Hy(/) be smooth and strictly convex, / € B".

The First Main Result For any v > 0 & a generic smooth perturbation
eHi (¢, I, t) the Hamiltonian

He(§07 I? t) = HO(I) + 6H1 (@7 Ia t)

has an orbit (¢, I, t)(f) which is y-dense in T x B" x T. Namely,
~-neighbourhood of U; (e, I, t)(t) contains T"” x B" x T.

[K-Zhang, 12] n=2 (arxiv)
In 2002 a version of this result was announced by Mather.
There is an annoucement of Cheng.

[K-Zhang, 14] n=3 (my webpage)
[K-Zhang, 14] n > 3, progress (arxiv)
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A weak form of quasiergodic hypothesis

Let Ho(/) be smooth and strictly convex, | € B2.
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A weak form of quasiergodic hypothesis

Let Ho(/) be smooth and strictly convex, | € B2.

The Second Main Result [Guardia-K] For any v > 0 & a dense set of
perturbations ¢H; the Hamiltonian H.(¢, I, t) = Ho(I) + eHi (¢, I, t) has
an orbit (¢., I, t)(t) accumulating to all KAM tori and, therefore,

Leb {m}

[eb(Tex B2 xT} ~ 7
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Let Ho(/) be smooth and strictly convex, | € B2.

The Second Main Result [Guardia-K] For any v > 0 & a dense set of
perturbations ¢H; the Hamiltonian H.(¢, I, t) = Ho(I) + eHi (¢, I, t) has
an orbit (¢., I, t)(t) accumulating to all KAM tori and, therefore,

Leb {m}

[eb(Tex B2 xT} ~ 7

A weak form of Quasiergodict hypothesis: there exists an orbit dense
in a set of almost maximal measure.
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A weak form of quasiergodic hypothesis

Let Ho(/) be smooth and strictly convex, | € B2.

The Second Main Result [Guardia-K] For any v > 0 & a dense set of
perturbations ¢H; the Hamiltonian H.(¢, I, t) = Ho(I) + eHi (¢, I, t) has
an orbit (¢., I, t)(t) accumulating to all KAM tori and, therefore,

Leb {m}

[eb(Tex B2 xT} ~ 7

A weak form of Quasiergodict hypothesis: there exists an orbit dense
in a set of almost maximal measure.

Byproduct: KAM tori are Lyapunov unstable!
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Instabilities in the Asteroid Belt

“Trojans/
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Instabilities in the Asteroid Belt

Moser: Is the Solar System Stable?
The Math Intelligencer, 78

[ [N

»Jupiter : e 2/7 13 3/82/53]7 4195

Fig 5. The number of asteroids as a function of the semi-major axis a. The a-values corresponding to certain fractions of
< period are marked below. Some of these ‘resonances’ have produced gaps in the asteroid distribution.
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Moser: Is the Solar System Stable?
The Math Intelligencer, 78
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% 5. The number of asteroids as a function of the semi-major axis a. The a-values corresponding to certain fractions of
< period are marked below. Some of these ‘resonances’ have produced gaps in the asteroid distribution.

J. Wisdom,83, Chaotic Behavior & the Origin of the 3/1 Kirkwood Gaps
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Instabilities in the Asteroid Belt

“Trojans?

Moser: Is the Solar System Stable?
The Math Intelligencer, 78

a
. i
5 1.0 1.5 2.0 4.5
N R NN [N [
e >~
14 2/7 13 3/82/5 3i7 4195116/ /82/3 3/4

% 5. The number of asteroids as a function of the semi-major axis a. The a-values corresponding to certain fractions of
< period are marked below. Some of these ‘resonances’ have produced gaps in the asteroid distribution.

J. Wisdom,83, Chaotic Behavior & the Origin of the 3/1 Kirkwood Gaps

Fejoz-Guardia-K-Roldan (to appear in J of the EMS)
Unstable orbits exist in the 3 : 1 Kirkwood gap.
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Diffusion conjecture for Arnold’s example

Diffusion conjecture Let

2 2

harm oscillator

2 2
He = I— +(p_+cosq> +5H1(90,Iaq,pat)a (p,q,tGT, I’pER’
———

pendulum

where H; is a generic perturbation.

FmCOI0N0 s 32
AL
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Diffusion conjecture for Arnold’s example

Diffusion conjecture Let

2 2
H. = IT +(p2+COSq> +EH1(907laq’pat)a ¢, q,teT, I,,OGR,
—_———

harm oscillator pendulum

where H; is a generic perturbation. Let Leb. be the norm Lebesgue
measure on the /e-ball around 0. Then I(%’;‘a) converges to a
diffusion process wrt Leb, .
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Stochastic Aspects of Arnold diffusion

Model Problem

V. Kaloshin (University of Maryland) Arnold diffusion November 24, 2014 20/22



Stochastic Aspects of Arnold diffusion

Model Problem Let
fo: (¢, 1) = (¢ + I+ ccosep, | +ecos ),

fi i (o, ) = (p+ [+ esing, [ +esiny),

be a pair of standard maps.
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Stochastic Aspects of Arnold diffusion

Model Problem Let
fo: (¢, 1) = (¢ + I+ ccosep, | +ecos ),

fi i (o, ) = (p+ [+ esing, [ +esiny),
be a pair of standard maps.

Consider random composition of these maps

fwn o fwn71 0--0 fw1 (@07 IO) = (QOn, In)
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Stochastic Aspects of Arnold diffusion

Model Problem Let
fo: (g, ) = (p+1+ecose, | +eccosyp),
fi: (o, 1) = (p+ I +esing, I+ esiny),
be a pair of standard maps.
Consider random composition of these maps
fon 0 fop_y 0+ 0 L (90, lo) = (n; In)-

Theorem (joint work with O. Castejon) For n ~ ¢~2 such compositions
satisfy the Central Limit Theorem, i.e.

In— IO%N(O,U),

where N(0, ) is a normal random variable with some variance o > 0.
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Diffusion mechanism

% IRREGULAR
ORBITS
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Diffusion mechanism

% IRREGULAR
ORBITS

@ (Mané 90s) periodic orbit; ~~ periodic orbit, ~~ periodic orbits . ..

@ (Arnold, Gallavotti, Lochak, ... 60s-80s) whiskered KAM torus | ~~
whiskered KAM torus, ~~ whiskered KAM torussz ~ ...

@ (Mather, Bernard, Cheng 90-00s) Cantor torusy ~» Cantor
torus, ~ Cantor torusz ~- ...

@ Find invariant sets inside Normally Hyperbolic Invariant Cylinders
w. transverse invariant manifolds
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