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SUMMARY: Slide 1

I Oscillating flows appear in various
applications: geophysics, coastal engineering,
self-swimming, medicine, machinery ... One can
say that oscillating flows are the most important
in applied hydrodynamics ...

I The flow oscillations can be caused by various
factors such as oscillating boundaries, surface
waves, acoustic waves, MHD waves, etc.

I Our aim is to present asymptotic/averaging
models for oscillating fluid flows with the
use of the multi-scale (two-timing) method.
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SUMMARY: Slide 2

I We consider relatively ‘weak’ averaged
flows, interacting with the flow oscillations.

I The distinctive property of the averaged flows is:
they possess an additional advection with the
drift velocity.

I All our consideration is Eulerian. The drift
velocity is Lagrangian characteristic of a flow,
however in our consideration it naturally appears
in an Eulerian procedure.

I The relations to the Stokes drift, Langmuir
circulations, acoustics, and MHD dynamo are
discussed.
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SUMMARY: Slide 3

I Our models represent examples of Hamiltonian
systems and interesting areas of exploiting of
Arnold’s ideas in Hydrodynamics.

I The averaged equations and boundary conditions
possess the energy-type integral, which allows
us to consider some ‘energy-related’ results.

I We have derived a number of results such as the
energy variational principle, the second
variation of energy, and some Arnold-type
stability criteria for averaged flows.
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Oscillating Flows in bio-applications: Slide 4A
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Oscillating Flows in med-applications: Slide 4B
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Oscillating Flows in turbine-applications: Slide 4C

 

Prof. V. A. Vladimirov[2mm] University of York University of Cambridge Sultan Qaboos University Novosibirsk State University...ARNOLD STABILITY of [3mm] TIME-OSCILLATING FLOWS[2mm] Legacy of Vladimir Arnold[2mm] Fields Institute, November, 2014



Drift motion brings impressive income: Slide 4D
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Langmuir Circulations in a lake: Slide 4E
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3D Vortex Dynamics in Oscillating Domain Slide 5

A homogeneous inviscid incompressible fluid in a 3D domain Q
with oscillating boundary ∂Q. Velocity u† = u†(x†, t†),
vorticity ω† ≡ ∇† × u†

∂ω†

∂t†
+ [ω†,u†]† = 0, ∇† · u† = 0

where ‘dags’ mark dimensional variables, and square brackets
stand for the commutator. The boundary condition at ∂Q is

dF †/dt† = 0 at F †(x†, t†) = 0

The characteristic scales of velocity, length, and two additional
time-scales

U†, L†, T †fast, T †slow
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Vortex Dynamics in 3D Oscillating Domain Slide 6

Q(t)

u(x, t)

∂Q(t)

∂Q0

Oscillating flow domain Q(t)

n(t)
n0

vortex flow
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Scaling parameters: Slide 7

Two independent dimensionless parameters

Tfast ≡ T †fast/T
†, Tslow ≡ T †slow/T

†, where T † ≡ L†/U†

Tfast – the given period of oscillations, the frequency of
oscillations

σ† ≡ 1/T †fast, σ ≡ T †/T †fast

The dimensionless independent variables

x ≡ x†/L†, t ≡ t†/T †

The dimensionless ‘fast time’ τ and ‘slow time’ s:

τ ≡ t/Tfast = σt, s ≡ t/Tslow ≡ St, S ≡ T †/T †slow

Attention! T †slow is NOT given! It is unknown!
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Oscillating velocity Slide 8

We consider the oscillatory solutions

u† = AU†u(x, s, τ)

where τ -dependence is 2π-periodic, s-dependence is general,
A – the dimensionless amplitude of velocity.

f

t

f = f(s) + f̃(s, τ)
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Scaling Slide 9

Dimensionless variables and the chain rule give
(
∂

∂τ
+

S

σ

∂

∂s

)
ω +

A

σ
[ω,u] = 0

where s and τ are still mutually dependent variables.

An auxiliary assumption: we operate with s and τ
as mutually independent variables; justification of it
often can be given a posteriori by the estimation of
the errors/residuals in the equation, rewritten back
to the original variable t.
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Two independent small parameters Slide 10

I In the two-timing method the basic small parameter is

Tslow/Tfast = S/σ

I The term ∂ω/∂τ must be dominating, in order to form an
evolution equation. Hence, generally, we take two
independent small parameters ε1, ε2 as:

ωτ + ε1ωs + ε2[ω,u] = 0; ε1 ≡
S

σ
� 1, ε2 ≡

A

σ
≤ 1

• ε1 is ratio of two characteristic time scales;
• ε2 is the ratio of amplitude over frequency. Note: the
amplitude itself can be huge!

I Asymptotic solutions correspond to the limit
(ε1, ε2)→ (0, 0).
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Distinguished Limits Slide 11

I There are infinitely many asymptotic pathes (ε1, ε2)→ (0, 0).
QUESTION: Is the number of different asymptotic solutions
also infinite?

I We accept that the distinguished limit is given by such a path
(ε1, ε2)→ (0, 0) that allows us to build a self-consistent
asymptotic procedure, leading to the finite/valid solution in
any approximation.

I ANSWER: By the method of trial and errors one can find that
there are only two pathes, which allow to build such solutions:

ε1 = ε2 ≡ ε : ωτ + εωs + ε[ω,u] = 0

ε1 = ε22 ≡ ε2 : ωτ + ε2ωs + ε[ω,u] = 0

The second case leads to the Weak Vortex Dynamics (WVD).
I Any systematic procedure of finding all possible distinguished

limits is unknown: it can be classified as an experimental
mathematics (Arnold). This is why pure mathematicians do
not like this research area.
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Notations Slide 12

Any function f = f (x, s, τ) in this paper is:
• f = O(1) and all x-, s-, and τ -derivatives of f are also O(1).
• f (x, s, τ) = f (x, s, τ + 2π)
• The averaging operation is

〈f 〉 ≡ 1

2π

∫ τ0+2π

τ0

f (x, s, τ) dτ, ∀ τ0

• The tilde-functions (or purely oscillating functions) is such that

f̃ (x, s, τ) = f̃ (x, s, τ + 2π), with 〈f̃ 〉 = 0,

• The class of bar-functions is defined as

f : f τ ≡ 0, f (x, s) = 〈f (x, s)〉
• The tilde-integration keeps the result in the tilde-class:

f̃ τ ≡
∫ τ

0
f̃ (x, s, σ) dσ − 1

2π

∫ 2π

0

(∫ µ

0
f̃ (x, s, σ) dσ

)
dµ.
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Weak Vortex Dynamics procedure Slide 13

We are looking for the solutions as regular series

ωτ + ε[ω,u] + ε2ωs = 0, ε→ 0

(ω,u) =
∞∑

k=0

εk(ωk ,uk), k = 0, 1, 2, . . .

Our choice: the leading terms for the mean vorticity and mean
velocity vanishes:

ω0 ≡ 0 u0 ≡ 0

It means that relatively weak vorticity develops on the background
of a wave motion.
The zero approximation is ω̃0τ = 0, its unique solution (within the
tilde-class) is ω̃0 ≡ 0. Then full vorticity vanishes

ω0 ≡ 0

Hence the flow in zero approximation is purely oscillatory and
potential.
Then equation of the first approximation is also ω̃1τ = 0. Its
unique solution (within the tilde-class) is ω̃1 ≡ 0, while the mean
value ω1 remains undetermined. We write it symbolically as

ω̃1 ≡ 0, ω1 = ?
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Weak Vortex Dynamics procedure Slide 14

The equation of second approximation is

ω̃2τ = −[ω1, ũ0]

which yields

ω̃2 = [ũτ
0 ,ω1], ω2 = ?

The equation of third approximation is

ω̃3τ + ω1s + [ω2, ũ0] + [ω1,u1] = 0

Its bar-part is

ω1s + [ω1,u1] + 〈[ω̃2, ũ0]〉 = 0

which can be transformed to:

ω1s + [ω1,u1 + V0] = 0

V0(x) ≡ 1

2
〈[ũ0, ũ

τ
0]〉
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Weak Vortex Dynamics procedure Slide 15

After the dropping of subscripts and bars we get the WVD model

ωs + [ω,w] = 0, where w ≡ u + V0

which shows that the averaged vorticity is ‘frozen’ into the
‘velocity+drift’.

The oscillating boundary is given by an exact expression

F (x, t) = F 0(x, s) + εF̃1(x, s, τ) = 0

The same steps applied to dF/dt = 0 lead to

F 0s + w · ∇F 0 = 0, w ≡ u + V0

When F 0s = 0, it gives the averaged no-leak condition:

w · n0 = 0 or u · n0 = −V0 · n0 at F 0(x) = 0

The boundary conditions are valid not at the real boundary, but at
its averaged position.
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Lagrangian property in Eulerian description Slide 16

I The advection of an averaged vector-field is

ωs + [ω, (u + V0)] = 0

which shows that the averaged vorticity is ‘frozen’ into
the ‘velocity+drift’.

I The advection of an averaged scalar-field appears as

F 0s + (u + V0) · ∇F 0 = 0

I One can see that the Lagrangian property (the drift
velocity V0) naturally appears in the Eulerian description
after the averaging over oscillations.
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Weak Vortex Dynamics Equations Slide 17

Hence the problem for the purely oscillating boundaries ∂Q can be
formulated as

us + (u · ∇)u + ω × V0 = −∇p, ∇ · u = 0 in Q0

With the leak boundary condition:

u · n0 = −V0 · n0 at ∂Q0

The boundary conditions are valid not at the real boundary, but at
its averaged position.
The drift velocity is to be recovered from an independent problem

V0(x) ≡ 1

2
〈[ũ0, ũ

τ
0]〉

where ũ0 represents the solution of previous approximation
ũ0τ = −∇p0 and div ũ0 = 0 with appropriate boundary conditions.
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Examples of Weak Vortex Dynamics Slide 18

Qu(x, t)

∂Q

∂Q0

(a) flexible oscillating walls (b) Oscillating pistons in U - tube.

n
n0

x1

x2

x3

(c) Rotating rigid body
(d) Acoustic wave
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Stokes Drift Slide 19

The dimensional solution for a plane potential travelling gravity
wave is

u†0 = U†ũ0, ũ0 = exp(k†z†)

(
cos(k†x† − τ)
sin(k†x† − τ)

)

U† = k†g †a†/σ† where σ†, a†, and g † are dimensional frequency,
spatial wave amplitude, and gravity. Then

ũ0 = ez
(

cos(x − τ)
sin(x − τ)

)
, V0 = e2z

(
1
0

)

The dimensional version

V
†
0 =

U2k†

σ†
e2k

†z†
(

1
0

)

which agrees with the classical expression for the drift velocity.
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Stokes Drift Slide 20

Drift motion of a material particle due to a surface wave.
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Langmuir Circulations Slide 21

Transactionally invariant averaged flows + plane potential
travelling gravity wave; (x , y , z) be such that V0 = (U, 0, 0),
U = e2z , u1 = (u, v ,w). Then the component form of (1) is

us + vuy + wuz = 0

vs + uvy + wvz − Uuy = −py
ws + vwy + wwz − Uuz = −pz
vy + wz = 0

it can be rewritten as

vs + vvy + wvz = −Py − ρΦy

ws + vwy + wwz = −Pz − ρΦz

vy + wz = 0

ρs + uρx + vρy = 0

where ρ ≡ u, Φ ≡ U = e2z , and P is a new modified pressure. It is
equivalent to an incompressible stratified fluid.
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Qualitative pattern of Langmuir Circulations Slide 22

The effective ‘gravity field’ g = −∇Φ = (0, 0,−2e2z) is
non-homogeneous. Nevertheless longitudinal vortices appear as a
‘Taylor instability’ of an inversely stratified equilibrium which
corresponds to (u, v ,w) = (u(z), 0, 0) with any increasing function
u(z) ≡ ρ(z).

Qualitative pattern of Langmuir circulations
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Langmuir Circulations Slide 23

lon
git
ud
ina

l s
tri
ps

on
th
e s
ur
fac

e

Langmuir circulations
eff
ect

ive

str
ati
fic
ati
on

ρ ≡
u(
z)

eff
ect

ive

gra
vit
y

g ≡
−dU

/d
z

DR
IF
T

U(
z)

z

Generation of Langmuir circulations is equivalent to the
Rayleigh-Taylor instability of a fluid with an inverse density
stratification.
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Second Example: Acoustics Slide 24

Surprisingly, the averaged equations for acoustics are the same as
for incompressible fluid

us + (u · ∇)u + ω × V0 = −∇p, ∇ · u = 0 in Q0

u · n0 = −V0 · n0 at ∂Q0

V0 ≡
1

2
〈[ũ0, ũ

τ
0]〉

The difference is: V0 can be NOT solenoidal!
Also one can suggest that by a proper configuration of acoustic
wave, one can obtain almost ANY field of V0(x)
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Third Example: MHD Slide 25

For the incompressible MHD the averaged equations are

ωs + [ω,u + V]− [j,h] = 0, j = curl h

hs + [h,u + V] = 0, div u = 0, div h = 0

V0 ≡ 〈[ũ0, ũ
τ
0]〉/2

It can be derived by similar consideration. This system of
equations is studying now for so-called MHD Stokes drift dynamo.
The question about a general MHD-dynamo is completely open.
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WVD: Energy Slide 26

The ‘energy’ integral for the averaged WVD motion can be written
as:

E = E (s) =
1

2

∫

Q
(u + V0)2dx = const, dx ≡ dx1dx2dx3

One can show that its s-derivative can be written as

dE

ds
= −

∫

Q

(
p +

u2

2

)
(u + V0) · n0dx = 0

which is zero due to the BC.
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WVD: Isovorticity condition Slide 27

According to (1) vorticity is ‘frozen’ into u + V0. It allows us to
use the slightly generalized Arnold isovorticity condition in its
differential form

uθ = f × ω +∇α, div u = 0, div f = 0; in Q0

(u + V0) · n0 = 0, f · n0 = 0 at ∂Q0

where u(x, θ) is the unknown function, f = f(x, θ) is an arbitrary
given solenoidal function, θ is a scalar parameter along an
isovortical trajectory, subscript θ stands for the related partial
derivative. Function α(x, θ) is to be determined from the condition
div u = 0. The initial data at θ = 0 for u(x, θ) (1) correspond to a
steady flow

u(x, 0) = U(x), ω(x, 0) = Ω(x)

where U(x) and Ω(x) represent the steady solutions (∂/∂s = 0)
with ‘no-leak’ boundary conditions.
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Variational Principle Slide 28

Differentiation of E with respect θ produces the zero of first
variation

Eθ

∣∣∣
θ=0

=

∫

Q0

f (Ω×W) dx = 0, W ≡ U + V0

which vanishes for any function f by the virtue of equations of
motions and boundary conditions for the steady flow. This equality
gives us the variational principle: any steady flow represents a
stationary point on the isovortical sheet. The only difference
from the classical Arnold’s result is the modified definition of the
isovorticity condition.
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Second Variation of Energy Slide 29

Eθθ

∣∣∣
θ=0

=

∫

Q0

(
u2
θ + (W × f) · ωθ

)
θ=0

dx

It shows that the stationary point of the energy functional in the
3D case always represents a saddle point.
Stability conditions for the steady plane flows: W1 = ∂Ψ/∂x2,
W2 = −∂Ψ/∂x1. The second variation is

Eθθ

∣∣∣
θ=0

=

∫

Q0

(
u2
θ −

dΨ

dΩ
ω2
θ

)

θ=0

dx1dx2

where Ψ = Ψ(Ω) characterises the considered plane steady flow.
Then, similar to the Arnold cases the inequalities with two
constants C−,C+ and C− < −dΨ/dΩ < C+ give both sufficient
linear and nonlinear stability conditions.
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Discussion: Slide 30

I We have introduced a class of fluid flow models,
which is characterised by an additional advection
with the drift velocity, which appears as an
arbitrary given function. All these models have
been obtained by regular asymptotic procedures.

I The drift velocity is not small, it is of the same
order of magnitude as the averaged Eulerian
velocity.

I These models include vortex dynamics,
acoustics, and MHD; all they have important
applications.
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Discussion: Slide 31

I The WVD was discovered by Craik and
Leibovich in 1978 (CL-equation); they were
focused on the description of Langmuir
circulations generated by surface waves.

I Our main achievement is a drastic simplification
of the derivation of WVD. The usual derivation
of WVD equations is performed with the use of
the GLM (by M. E. McIntyre). We introduce
the WVD in its natural simplicity and generality.
Our derivation is accessible to the 2nd year UG
students.
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Discussion: Slide 32

I All considered models are Hamiltonian. Darryl
Holm did it for the WVD in the GLM form,
which is somehow different from ours. We leave
the developing of the related Hamiltonian
structures to the ‘Hamiltonian community’.

I The discussed analogy with stratification
immediately leads to the Richardson type
stability criteria ...

I A possibility of the finite-time singularity in the
WVD vorticity field can be studied.

I Viscosity and/or density stratification can be
routinely added to the WVD equations...
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