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Diffusion in a billiard with periodic obstacles
(“Windtree model” of P. and T. Ehrenfest; 1912)

Consider a billiard on the plane with Z2-periodic rectangular obstacles.
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(“Windtree model” of P. and T. Ehrenfest; 1912)

Consider a billiard on the plane with Z2-periodic rectangular obstacles.

[

Old Theorem (V. Delecroix, P. Hubert, S. Lelievre, 2011). For all parameters
of the obstacle, for almost all initial directions, and for any starting point, the
billiard trajectory escapes to infinity with the rate t2/3. That IS,

maxop<r<¢ (distance to the starting point at time 7') ~ t2/3,
Here % ”is the Lyapunov exponent of certain “renormalizing” dynamical system

associated to the initial one.
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Here "3 " is the Lyapunov exponent of certain “renormalizing” dynamical system

associated to the initial one.

Remark. Changing the height and the width of the obstacle we get quite
different billiards, but this does not change the diffusion rate!
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Changing the shape of the obstacle

Almost Old Theorem (V. Delecroix, A. Z., 2014). Changing the shape of the
obstacle we get a different diffusion rate. Say, for a symmetric obstacle with
Am — 4 angles 37 /2 and with 4m angles 7 /2 the diffusion rate is

(2m)!! N VT

asm — 0.

(2m + 1)!! 2y/m

Note that once again the diffusion rate depends only on the number of the
corners, but not on the lengths of the sides, or other details of the shape of the
obstacle.

4/29



Changing the shape of the obstacle

Almost Old Theorem (V. Delecroix, A. Z., 2014). Changing the shape of the
obstacle we get a different diffusion rate. Say, for a symmetric obstacle with
4m — 4 angles 3 /2 and with 4m angles m /2 the diffusion rate is

as m — 0.
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Note that once again the diffusion rate depends only on the number of the
corners, but not on the lengths of the sides, or other details of the shape of the

obstacle.
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From a billiard to a surface foliation

Consider a rectangular billiard.

Displacement as intersection number I
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From a billiard to a surface foliation

Instead of reflecting the trajectory we can
reflect the billiard table.

Displacement as intersection number I
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From a billiard to a surface foliation

The trajectory unfolds to a straight line.

s

’
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/

Displacement as intersection number I
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From a billiard to a surface foliation

s

’
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/

Folding back the
copies of the billiard table we project this line to the original trajectory.

/\

Displacement as intersection number I
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From a billiard to a surface foliation

At any
moment the ball moves in one of four directions defining four types of copies of
the billiard table. Copies of the same type are related by a parallel translation.

’

@ V C
B/ .

D / = D /

Displacement as intersection number I
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From a billiard to a surface foliation

e

A

|ldentifying the equivalent patterns by a parallel translation we obtain a torus;
the billiard trajectory unfolds to a “straight line” on the corresponding torus.

Displacement as intersection number I
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From the windtree billiard to a surface foliation

Similarly, taking four copies of our ZQ-periodic windtree billiard we can unfold it
to a foliation on a Z2-periodic surface. Taking a quotient over 72 we get a
compact flat surface endowed with a foliation in “straight lines”. Vertical and
horizontal displacement of the ball at time ¢ is described by the intersection
numbers c(t) o v and c(t) o h of the cycle ¢(t) obtained by closing up the
endpoints of the billiard trajectory after time ¢ with the cycles

h = hoo + h1o — ho1 — h11 and v = vog — V19 + Vo1 — V11

w o
V01 A : % I\ A % A %011
”OOM ; Tﬁ T %”10
hoo hio

Very flat metric. Automorphisms |
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Dehn twist and deformations of a flat torus

Cut a torus along a horizon-
tal circle.
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Dehn twist and deformations of a flat torus

Twist progressively horizon-
tal circles up to a complete
turn on the opposite bound-
ary component of the cylin-
der and then identify the
boundary components.
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A 1 1
Dehn twist corresponds to the linear map f3, : R? — R? with the matrix (O 1).
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Dehn twist and deformations of a flat torus

Twist progressively horizon-
tal circles up to a complete
turn on the opposite bound-
ary component of the cylin-
der and then identify the
boundary components.

A 1 1
Dehn twist corresponds to the linear map f3, : R? — R? with the matrix (0 1).
a a

K '/_\CL
~ o)
b \C\ b b = b _ ¢ b ¢
N |
\ |

a a RL a
It maps the square pattern of the torus 10 a parallelogram pattern. Cutting and
pasting appropriately we can transform the new pattern to the initial square one.

|
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Arnold’s cat (Fibonacci) diffeomorphism

Consider a composition
of two Dehn twists
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Arnold’s cat (Fibonacci) diffeomorphism

Consider a composition
of two Dehn twists g= fyofn=

It corresponds to the integer linear map ¢ : R? — R? with matrix

A—ll—lo 11Ctt' d ti jately th
=17 9)=l1 1 o 1 /- Cutting and pasting appropriately the

image parallelogram pattern we can check by hands that we can transform the
new pattern to the initial square one.
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Pseudo-Anosov diffeomorphisms

S - . , 1 1
Consider eigenvectors vU,, and U, of the linear transformation A = (1 2)

with eigenvalues A = (3 +v/5)/2~ 2.6and 1/\ = (3 — /5)/2 ~ 0.38.
Consider two transversal foliations on the original torus in directions v,,, Us. We
have just proved that expanding our torus T? by factor A in direction v, and
contracting it by the factor \ in direction U5 we get the original torus.
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Definition. Surface automorphism homogeneously expanding in direction of
one foliation and homogeneously contracting in direction of the transverse
foliation is called a pseudo-Anosov diffeomorphism.
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with eigenvalues A = (3 +v/5)/2~ 2.6and 1/\ = (3 — /5)/2 ~ 0.38.
Consider two transversal foliations on the original torus in directions v,,, Us. We
have just proved that expanding our torus T? by factor A in direction v, and
contracting it by the factor \ in direction U5 we get the original torus.

R = . , 1 1
Consider eigenvectors vU,, and U, of the linear transformation A = ( )

Definition. Surface automorphism homogeneously expanding in direction of
one foliation and homogeneously contracting in direction of the transverse
foliation is called a pseudo-Anosov diffeomorphism.

Consider a one-parameter family of flat tori obtained from the initial square
torus by a continuous deformation expanding with a factor el in directions 7,
and contracting with a factor el in direction 5. By construction such
one-parameter family defines a closed curve in the space of flat tori: after the
time tg = log \,, it closes up and follows itself.
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Pseudo-Anosov diffeomorphisms

1 2
with eigenvalues A = (3 +v/5)/2~ 2.6and 1/\ = (3 — /5)/2 ~ 0.38.
Consider two transversal foliations on the original torus in directions v,,, Us. We
have just proved that expanding our torus T? by factor A in direction v, and
contracting it by the factor \ in direction U5 we get the original torus.

R = . , 1 1
Consider eigenvectors vU,, and U, of the linear transformation A = ( )

Definition. Surface automorphism homogeneously expanding in direction of
one foliation and homogeneously contracting in direction of the transverse
foliation is called a pseudo-Anosov diffeomorphism.

Consider a one-parameter family of flat tori obtained from the initial square
torus by a continuous deformation expanding with a factor e’ in directions ¥,
and contracting with a factor el in direction 5. By construction such
one-parameter family defines a closed curve in the space of flat tori: after the
time tg = log \,, it closes up and follows itself.

Observation. Pseudo-Anosov diffeomorphisms define closed curves (actually,
closed geodesics) in the moduli spaces of Riemann surfaces.
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Space of lattices

e By a composition of homothety and
rotation we can place the shortest
vector of the lattice to the horizontal
unit vector.

11/29



Space of lattices

e By a composition of homothety and
rotation we can place the shortest ¢ o o o | o o o o
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closest to the origin and o—o—o *—o—0o0—0
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e This point is located
outside of the unit disc.
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Space of lattices

e By a composition of homothety and

rotation we can place the shortest ¢ o o
vector of the lattice to the horizontal

unit vector. e o o

e Consider the lattice point

closest to the origin and *—o
located in the upper

half-plane. ® e o |6 o o o o

e This point is located
outside of the unit disc. ® o o (e o o o o

e It necessarily lives inside
the strip —1/2 < x < 1/2.

We get a fundamental domain in the space of lattices, or, in other words, in the
moduli space of flat tori.
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Moduli space of tori

_ ~ :

neighborhood of a p—
! cusp = subset of |
! tori having short

closed geodesic

The corresponding modular surface is not compact: flat tori representing
points, which are close to the cusp, are almost degenerate: they have a very
short closed geodesic. It also have orbifoldic points corresponding to tori with
extra symmetries.

Geodesic flow I
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Very flat surface of genus 2
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Very flat surface of genus 2

|dentifying the opposite sides of a regular octagon we get a flat surface of
genus two. All the vertices of the octagon are identified into a single conical
singularity. We always consider such a flat surface endowed with a
distinguished (say, vertical) direction. By construction, the holonomy of the flat
metric is trivial. Thus, the vertical direction at a single point globally defines
vertical and horizontal foliations.
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Group action /)\

{

\
N

\*c/
The group SL(2, R) acts on the each space H1(d1, . . ., d,) of flat surfaces of

unit area with conical singularities of prescribed cone angles 27 (d; + 1). This
action preserves the natural measure on this space. The diagonal subgroup

t
(% 69t> C SL(2,R) induces a natural flow on H1(d1, . .., d, ) called the

Teichmdiller geodesic flow.
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\
N

\*c/
The group SL(2, R) acts on the each space H1(d1, . . ., d,) of flat surfaces of

unit area with conical singularities of prescribed cone angles 27 (d; + 1). This
action preserves the natural measure on this space. The diagonal subgroup

t
(% 69t> C SL(2,R) induces a natural flow on H1(d1, . .., d, ) called the

Teichmdiller geodesic flow.

Keystone Theorem (H. Masur; W. A. Veech, 1992). The action of the groups
t
SL(2,R) and (

€

0
on each connected component of every space H(d1, ..., d,).

0
e_t) Is ergodic with respect to the natural finite measure

14129



Magic of Masur—Veech Theorem

Theorem of Masur and Veech claims that taking at random an octagon as
below we can contract it horizontally and expand vertically by the same factor
el to get arbitrary close to, say, regular octagon.
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Magic of Masur—Veech Theorem

Theorem of Masur and Veech claims that taking at random an octagon as
below we can contract it horizontally and expand vertically by the same factor

el to get arbitrary close to, say, regular octagon.

There is no paradox since we are allowed to cut-and-paste!

—

/

.

\V/J

™

™S

\i

J

\

R

15/29



Magic of Masur—Veech Theorem

Theorem of Masur and Veech claims that taking at random an octagon as
below we can contract it horizontally and expand vertically by the same factor
el to get arbitrary close to, say, regular octagon.
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X . <

The first modification of the polygon changes the flat structure while the second
one just changes the way in which we unwrap the flat surface.
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Asymptotic cycle for a torus

Consider a leaf of a measured foliation on a surface. Choose a short
transversal segment X . Each time when the leaf crosses X we join the
crossing point with the point x¢ along X obtaining a closed loop. Consecutive
return points x1, x9, ... define a sequence of cycles c1, co, . ...

c
The asymptotic cycle is defined as lim,, — —ceH 1(T2; R).
n

Flow as an asymptotic cycle |
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Asymptotic cycle for a torus

Consider a leaf of a measured foliation on a surface. Choose a short
transversal segment X . Each time when the leaf crosses X we join the
crossing point with the point x¢ along X obtaining a closed loop. Consecutive
return points x1, x9, ... define a sequence of cycles c1, co, . ...

c
The asymptotic cycle is defined as lim,, — —ceH 1(T2; R).
n

Theorem (S. Kerckhoff, H. Masur, J. Smillie, 1986.) For any flat surface
directional flow in almost any direction is uniquely ergodic.

This implies that for almost any direction the asymptotic cycle exists and is the
same for all points of the surface.

Flow as an asymptotic cycle |
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Asymptotic cycle in the pseudo-Anosov case

Consider a model case of the foliation in direction of the expanding eigenvector

1 1
¥7,, of the Anosov map ¢ : T? — T? with Dg = A = (1 2).

/
, Direction of the expanding

, eigenvector v, of A = Dy
A ([ ] [ ] /O [ ] [ ] [ [ ]
® [ /. [ [ [ [ J [

/O ([ ] ([ ] ([ ] [ ] ([ ]
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Asymptotic cycle in the pseudo-Anosov case

Consider a model case of the foliation in direction of the expanding eigenvector

1 2

closed curve ~y and apply to it & iterations of g. The images gik) (c) of the
corresponding cycle ¢ = [7] get almost collinear to the expanding eigenvector
#, of A, and the corresponding curve g(*) () closely follows our foliation.

, 1 1
¥7,, of the Anosov map ¢ : T? — T? with Dg = A = ( ) Take a

/
, Direction of the expanding

eigenvector v,, of A = Dg
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closed curve ~y and apply to it k iterations of g. The images gik) (c) of the
corresponding cycle ¢ = [7] get almost collinear to the expanding eigenvector
¥, of A, and thegorresponding curve g(*) () closely follows our foliation.

, 1 1
¥, of the Anosov map g/ T? — T? with Dg = A = ( ) Take a

irection of the expanding
eigenvector v,, of A = Dg
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Asymptotic flag: empirical description

L5

L3

L2

Direction of the
asymptotic cycle

I

To study a deviation of cycles
cy from the asymptotic cycle
consider their projections

to an orthogonal hyperscreen
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Asymptotic flag: empirical description

Direction of the 00 %00
asymptotic cycle

The projections accumulate
along a straight line
iInside the hyperscreen

L5

L3 X1
L2
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Asymptotic flag: empirical description

L5

L3

L2

Direction of the
asymptotic cycle

Asymptotic plane L
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Asymptotic flag: empirical description

UL Y
o® 0'.0.0..

Direction of the
asymptotic cycle

L5

Asymptotic plane L

L3

L2
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Asymptotic flag

Theorem (A. Z. , 1999) For almost any surface S in any stratum
Hi(dy,...,d,) there exists a flag of subspaces
Ly CLyC---CLyC Hi(S;R) suchthatforanyj =1,...,9—1

. logdist(cn, Lj)
im su
N—)oop 1Og N

= Aj+1

and
dist(cn, Ly) < const,

where the constant depends only on S and on the choice of the Euclidean
Structure in the homology space.

The numbers 1 = A1 > A9 > --- > Aj are the top g Lyapunov exponents of
the Hodge bundle along the Teichmiiller geodesic flow on the corresponding
connected component of the stratum H(dy, . . ., dy).
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Asymptotic flag

Theorem (A. Z. , 1999) For almost any surface S in any stratum
Hi(dy,...,d,) there exists a flag of subspaces
Ly CLyC---CLyC Hi(S;R) suchthatforanyj =1,...,9—1

. logdist(cn, Lj)
im su
N—)oop 1Og N

= Aj+1

and
dist(cn, Ly) < const,

where the constant depends only on S and on the choice of the Euclidean
Structure in the homology space.

The numbers 1 = A1 > A9 > --- > Aj are the top g Lyapunov exponents of
the Hodge bundle along the Teichmiiller geodesic flow on the corresponding
connected component of the stratum H(dy, . . ., dy).

The strict inequalities A, > 0 and A2 > --- > A, and, as a corollary, strict
inclusions of the subspaces of the flag, are difficult theorems proved later by
G. Forni (2002) and by A. Avila—M. Viana (2007).
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Geometric interpretation of multiplicative ergodic theorem:
spectrum of “mean monodromy”

Consider a vector bundle endowed with a flat connection over a manifold X ™.
Having a flow on the base we can take a fiber of the vector bundle and
transport it along a trajectory of the flow. When the trajectory comes close to
the starting point we identify the fibers using the connection and we get a linear
transformation .A(x, 1) of the fiber; the next time we get a matrix A(x, 2), etc.

24/29 '



Geometric interpretation of multiplicative ergodic theorem:
spectrum of “mean monodromy”

The multiplicative ergodic theorem says that when the flow is ergodic a “matrix
of mean monodromy” along the flow
1

im (A*(z,N) - Az, N))2~

|
N —00

Amean T

is well-defined and constant for almost every starting point.

Lyapunov exponents correspond to logarithms of eigenvalues of this “matrix of
mean monodromy”.
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Hodge bundle and Gauss—Manin connection

Consider a natural vector bundle over the stratum with a fiber ! (S;R) over a
“point” (S, w), called the Hodge bundle. It carries a canonical flat connection
called Gauss—Manin connection: we have a lattice H'* (S;7Z) in each fiber,
which tells us how we can locally identify the fibers. Thus, Teichmuller flow on
Hi(dy,...,d,) defines a multiplicative cocycle acting on fibers of this bundle.
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Hodge bundle and Gauss—Manin connection

Consider a natural vector bundle over the stratum with a fiber ! (S;R) over a
“point” (S, w), called the Hodge bundle. It carries a canonical flat connection
called Gauss—Manin connection: we have a lattice H'* (S;7Z) in each fiber,
which tells us how we can locally identify the fibers. Thus, Teichmuller flow on
Hi(dy,...,d,) defines a multiplicative cocycle acting on fibers of this bundle.

The monodromy matrices of this cocycle are symplectic which implies that the
Lyapunov exponents are symmetric:

M Z>Ag 2> -2 A2 —Ag > - 2> =g > =)\

Morally, one can pretend that instead of the Teichmuller geodesic flow on the
stratum H1(d1, . . ., d,) we have a single closed geodesic passing through
almost every point. We pretend that it defines some universal pseudo-Anosov
diffeomorphism one and the same for almost all flat surfaces in
Hi(dy,...,d,), and that the Lyapunov exponents are the logarithms of the
eigenvalues of this universal pseudo-Anosov diffeomorphism.
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Formula for the Lyapunov exponents

Theorem (A. Eskin, M. Kontsevich, A. Z., 2014) The Lyapunov exponents
\; of the Hodge bundle HH%{ along the Teichmdliller flow restricted to an
SL(2, R)-invariant suborbifold L C H1(dy, . .., d,) satisfy:

1 o d;(d; + 2 2
)\1‘|—)\2‘|‘“'—|—)\g:1—2' C(Z_+1)+§'Carea(£).

=1

The proof is based on the initial Kontsevich formula + analytic Riemann-Roch

theorem + analysis of det Aﬂat under degeneration of the flat metric.
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Formula for the Lyapunov exponents

Theorem (A. Eskin, M. Kontsevich, A. Z., 2014) The Lyapunov exponents
\; of the Hodge bundle HH%{ along the Teichmdliller flow restricted to an
SL(2, R)-invariant suborbifold L C H1(dy, . .., d,) satisfy:

1 o d;(d; + 2 2
)\1‘|—)\2‘|‘“'—|—)\g:1—2' C(Z_+1)+§'Carea(£).

=1

The proof is based on the initial Kontsevich formula + analytic Riemann-Roch

theorem + analysis of det Aﬂat under degeneration of the flat metric.

Theorem (A. Eskin, H. Masur, A. Z., 2003) For L = H(d4,...,d,) one has

Carea(H1(d1, ..., dy)) = Z (explicit combinatorial factor)-

Combinatorial types
of degenerations

H§:1 Vol H; (adjacent simpler strata)
| Vol Hi(dy, . . ., dp)

27/29 '



Invariant measures and orbit closures

Fantastic Theorem (A. Eskin, M. Mirzakhani, 2014). The closure of any
SL(2, R)-orbit is a suborbifold. In period coordinates H' (.S, {zeroes}; C) any
SL(2, R)-suborbifold is represented by an affine subspace.

Any ergodic SL(2, R)-invariant measure is supported on a suborbifold. In
period coordinates this suborbifold is represented by an affine subspace, and
the invariant measure is just a usual affine measure on this affine subspace.

28/29



Invariant measures and orbit closures

Fantastic Theorem (A. Eskin, M. Mirzakhani, 2014). The closure of any
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Fantastic Theorem (A. Eskin, M. Mirzakhani, 2014). The closure of any
SL(2, R)-orbit is a suborbifold. In period coordinates H' (.S, {zeroes}; C) any
SL(2, R)-suborbifold is represented by an affine subspace.

Any ergodic SL(2, R)-invariant measure is supported on a suborbifold. In
period coordinates this suborbifold is represented by an affine subspace, and
the invariant measure is just a usual affine measure on this affine subspace.

Developement (A. Wright, 2014) Effective methods of construction of orbit
closures.

Theorem (J. Chaika, A. Eskin, 2014). For any given flat surface S almost all
vertical directions define a Lyapunov-generic point in the orbit closure of SL(2, R) - S.

Solution of the generalized windtree problem (V. Delecroix-A. Z., 2014).
Notice that any “windtree flat surface” S is a cover of a surface S in the
hyperelliptic locus L in genus 1, and that the cycles h and v are induced from
So. Prove that the orbit closure of Sj is L. Using the volumes of the strata in
genus zero, compute Cqreq (L). Using the formula for ) ° A\; = A1 compute A;.

28/29



Artistic image of a billiard in a polygon

" =

Varvara Stepanova. Joueurs de billard. Thyssen Museum, Madrid
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