

READINGS

Papers

- Stipelman, Brooke A., Hall, Kara L., Zoss, Angela, Okamoto, Janet, Stokols, Dan, and Börner, Katy (2014) Mapping the Impact of Transdisciplinary Research: A Visual Comparison of Investigator Initiated and Team Based Tobacco Use Research Publications. The Journal of Translational Medicine and Epidemiology.
- Bollen, Johan, David Crandall, Damion Junk, Ying Ding, and Katy Börner. 2014. From funding agencies to scientific agency: Collective allocation of science funding as an alternative to peer review. EMBO Reports 15 (1): 1-121.
- Mazloumian, Amin, Dirk Helbing, Sergi Lozano, Robert Light, and Katy Börner. 2013.
 Global Multi-Level Analysis of the 'Scientific Food Web'. Scientific Reports 3, 1167.

Books

- Börner, Katy. 2015. Atlas of Knowledge: Anyone Can Map. The MIT Press.
- Börner, Katy, and David E. Polley. 2014. Visual Insights: A Practical Guide to Making Sense of Data. Cambridge, MA: The MIT Press.
- Scharnhorst, Andrea, Katy Börner, and Peter van den Besselaar, eds. 2012. Models of Science Dynamics. Springer Verlag.
- Börner, Katy, Mike Conlon, Jon Corson-Rikert, and Ying Ding, eds. 2012. VIVO: A Semantic Approach to Scholarly Networking and Discovery. Morgan & Claypool Publishers LLC.
- Börner, Katy. 2010. Atlas of Science: Visualizing What We Know. The MIT Press.

.

Type of Analysis vs. Level of Analysis

	Micro/Individual (1-100 records)	Meso/Local (101–100,000 records)	Macro/Global (100,000 < records)		
Statistical Analysis/Profiling	Individual person and their expertise profiles	Larger labs, centers, universities, research domains, or states	All of NSF, all of USA, all of science.		
Temporal Analysis (When?)	Funding portfolio of one individual	Mapping topic bursts in 20-years of PNAS	113 Years of Physics Research		
Geospatial Analysis (Where?)	Career trajectory of one individual	Mapping a states intellectual landscape	PNAS publications		
Topical Analysis (What?)	Base knowledge from which one grant draws.	Knowledge flows in Chemistry research	VxOrd/Topic maps of NIH funding		
Network Analysis (With Whom?)	NSF Co-PI network of one individual	Co-author network	NIH's core competency		

7

Type of Analysis vs. Level of Analysis

Visualizing Science Technology and Innovation (STI)

Example: Places & Spaces: Mapping Science Exhibit

Empowering Anyone to Visualize STI Example: The Information Visualization MOOC

Course Schedule

Part 1: Theory and Hands-On

- Session 1 Workflow Design and Visualization Framework
- Session 2 "When:" Temporal Data
- Session 3 "Where:" Geospatial Data
- Session 4 "What:" Topical Data

Mid-Term

- **Session 5** "With Whom:" Trees
- Session 6 "With Whom:" Networks
- Session 7 Dynamic Visualizations and Deployment

Final Exam

Part 2: Students work in teams on client projects.

Final grade is based on Class Participation (10%), Midterm (30%), Final Exam (30%), and Client Project(30%).

Books Used in the IVMOOC

Teaches timely knowledge:

Advanced algorithms, tools, and hands-on workflows.

Teaches timeless knowledge:

Visualization framework exemplified using generic visualization examples and pioneering visualizations.

30

Course Schedule

Part 1: Theory and Hands-On

- Session 1 Workflow Design and Visualization Framework
- Session 2 "When:" Temporal Data
- Session 3 "Where:" Geospatial Data
- Session 4 "What:" Topical Data

Mid-Term

- Session 5 "With Whom:" Trees
- Session 6 "With Whom:" Networks
- Session 7 Dynamic Visualizations and Deployment

Final Exam

Part 2: Students work in teams on client projects.

Final grade is based on Class Participation (10%), Midterm (30%), Final Exam (30%), and Client Project(30%).

.0

Course Schedule

Part 1: Theory and Hands-On

- Session 1 Workflow Design and Visualization Framework
- Session 2 "When:" Temporal Data
- Session 3 "Where:" Geospatial Data
- Session 4 "What:" Topical Data

Mid-Term

- Session 5 "With Whom:" Trees
- Session 6 "With Whom:" Networks
- Session 7 Dynamic Visualizations and Deployment

Final Exam

Part 2: Students work in teams on client projects.

Final grade is based on Class Participation (10%), Midterm (30%), Final Exam (30%), and Client Project(30%).

41

Needs-Driven Workflow Design **DEPLOY** Validation Interpretation Stakeholders Visually encode data Types and levels of analysis determine data, algorithms & parameters, and **Overlay** deployment data Select visualiz. Data type **READ ANALYZE VISUALIZE**

Load One File and Run Many Analyses and Visualizations

Times Cited	Publication Year	City of Publisher	Country	Journal Title (Full)		Subject Category	Authors
12	2011	NEW YORK	USA	COMMUNICA TIONS OF THE ACM		Computer Science	Borner, K
18	2010	MALDEN	USA	CTS- CLINICAL AND TRANSLATIO NAL SCIENCE		Research & Experimental Medicine	Falk-Krzesinski, HJ Borner, K Contractor, N Fiore, SM Hall, KL Keyton, J Spring, B Stokols, D Trochim, W Uzzi, B
13	2010	WASHINGTON	USA	SCIENCE TRANSLATIO NAL MEDICINE	Perspective for the Science of Team Science		Borner, K Contractor, N Falk- Krzesinski, HJ Fiore, SM Hall, KL Keyton, J Spring, B Stokols, D Trochim, W Uzzi, B

Co-author and many other bi-modal networks.

45

Course Schedule

Part 1: Theory and Hands-On

- Session 1 Workflow Design and Visualization Framework
- Session 2 "When:" Temporal Data
- Session 3 "Where:" Geospatial Data
- Session 4 "What:" Topical Data

Mid-Term

- **Session 5** "With Whom:" Trees
- Session 6 "With Whom:" Networks
- Session 7 Dynamic Visualizations and Deployment

Final Exam

Part 2: Students work in teams on client projects.

Final grade is based on Class Participation (10%), Midterm (30%), Final Exam (30%), and Client Project(30%).

Visualization Frameworks

Readings

- Bertin, Jacques. 1983. Semiology of Graphics. Madison, WI: University of Wisconsin Press. [Josh Quick and Richard Higgins| Presentation 🖻 🗹 Brehmer, M. and T. Munzner. 2013. "A Multi-Level Typology of Abstract Visualization Tasks & ." IEEE Transactions on Visualization and Computer
- Brehmer, M. and T. Munzner. 2013. "A Multi-Level Typology of Abstract Visualization Tasks &"." IEEE Transactions on Visualization and Computer Graphics. 19 (12): 2376-2385. [lan Custer | Presentation and Street | Presentatio
- Engelhardt, Yuri. "Syntactic Structures in Graphics &"." See also Engelhardt, Yuri. 2002. "The Language of Graphics: A Framework for the Analysis of Syntax and Meaning in Maps, Charts, and Diagrams." PhD diss., University of Amsterdam. [Shambhavi Dhangalkar and David Ebenezer | Presentation @ Ø]
- Few, Stephen C. 2012. Show Me The Numbers: Designing Tables and Graphs to Enlighten. Burlingame, CA: Analytics Press. [Saumya Pandey and Anirudh Ramesh | Presentation at 187]
- Harris, Robert L. 1999. Information Graphics: A Comprehensive Illustrated Reference. New York: Oxford University Press. [Ashish Shendure and Manish Mohan Mohapatra | Presentation 👸 🗹
- Horn, Robert E. 1998. Visual Language: Global Communication for the 21st Century. Bainbridge Island, WA: MacroVU, Inc.
- MacEachren, Alan M. 2004. How Maps Work: Representation, Visualization, and Design. New York: Guilford. 271. [Kartik Adur | Presentation]
- Pirolli, Peter, and Stuart Card. 2005. "The Sensemaking Process and Leverage Points for Analyst Technology as Identified through Cognitive Task Analysis & ." In Proceedings of the International Conference on Intelligence Analysis, 2–4. McLean, VA: MITRE. [Renuka Deshmukh and John Stewart | Presentation 🚵 🗹
- Shneiderman, Ben. 1996. "The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations &." In Proceedings of the IEEE Symposium on Visual Languages, 336–343. Los Alamitos, CA: IEEE Computer Society. [Wensi Wang and Jagadish Shravan Kumar | Presentation @ &]
- Wehrend, Stephen C., and Clayton Lewis. 1990. "A Problem-Oriented Classification of Visualization Techniques & ." In Proceedings of the 1st Conference on Visualization, 139–143. Los Alamitos, CA: IEEE Computer Society. [Sowmya Achanta and Jae Eun Kum | Presentation 🗟 🗹
- Wilkinson, Leland. 2005. The Grammar of Graphics & . New York: Springer. [Trevor Edelblute | Presentation 🚉 🗷]
- Yau, Nathan. 2011. Visualize This: The FlowingData Guide to Design, Visualization, and Statistics & Indianapolis, IN: Wiley. (ebrary account & required to read/download)

Suggestions of other major works are welcome! We will add Kosslyn, 1989; Kindlmann & Scheidegger, 2014

Bertin, 1967	Wehrend & Lewis, 1996	Few, 2004	Yau, 2011	Rendgen & Wiedemann, 2012	Frankel, 2012	Tool: Many Eyes	Tool: Chart Chooser	Börner, 2014
selection	categorize			category				categorize/ cluster
order	rank	ranking					table	order/rank/ sort
	distribution	distribution					distribution	distributions (also outliers gaps)
	compare	nominal comparison & deviation	differences		compare and contrast	compare data values	comparison	comparison:
		time series	patterns over time	time	process and time	track rises and falls over time	trend	trends (process and time)
		geospatial	spatial relations	location		generate maps		geospatial
quantity		part-to- whole	proportions		form and structure	see parts of whole, analyze text	composition	composition (also of text)
association	correlate	correlation	relationships	hierarchy		relations between data points	relationship	correlations/ relationships
of Knowledge								

Visualization Types (Reference Systems)

- 1. Charts: No reference system—e.g., Wordle.com, pie charts
- Tables: Categorical axes that can be selected, reordered; cells can be color coded and might contain proportional symbols. Special kind of graph.
- **3. Graphs:** Quantitative or qualitative (categorical) axes. Timelines, bar graphs, scatter plots.
- **4. Geospatial maps:** Use latitude and longitude reference system. World or city maps.
- **5. Network layouts:** Node position might depends on node attributes or node similarity. **Trees:** hierarchies, taxonomies, genealogies. **Networks:** social networks, migration flows.

Visualization Frameworks

Readings

- Bertin, Jacques. 1983. Semiology of Graphics. Madison, WI: University of Wisconsin Press. [Josh Quick and Richard Higgins| Presentation 🖻 🛭 Brehmer, M. and T. Munzner. 2013. "A Multi-Level Typology of Abstract Visualization Tasks & ." IEEE Transactions on Visualization and Computer
- Brehmer, M. and T. Munzner. 2013. "A Multi-Level Typology of Abstract Visualization Tasks & ." IEEE Transactions on Visualization and Computer Graphics. 19 (12): 2376-2385. [lan Custer | Presentation 🖻 💅
- Few, Stephen C. 2012. Show Me The Numbers: Designing Tables and Graphs to Enlighten. Burlingame, CA: Analytics Press. [Saumya Pandey and Anirudh Ramesh | Presentation and Presentation of the Presentation
- Harris, Robert L. 1999. Information Graphics: A Comprehensive Illustrated Reference. New York: Oxford University Press. [Ashish Shendure and Manish Mohan Mohapatra | Presentation 👸 🗹
- Horn, Robert E. 1998. Visual Language: Global Communication for the 21st Century. Bainbridge Island, WA: MacroVU, Inc.
- MacEachren, Alan M. 2004. How Maps Work: Representation, Visualization, and Design. New York: Guilford. 271. [Kartik Adur | Presentation]
- Pirolli, Peter, and Stuart Card. 2005. "The Sensemaking Process and Leverage Points for Analyst Technology as Identified through Cognitive Task Analysis & ." In Proceedings of the International Conference on Intelligence Analysis, 2–4. McLean, VA: MITRE. [Renuka Deshmukh and John Stewart | Presentation 🔯 💅]
- Shneiderman, Ben. 1996. "The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations &." In Proceedings of the IEEE Symposium on Visual Languages, 336–343. Los Alamitos, CA: IEEE Computer Society. [Wensi Wang and Jagadish Shravan Kumar | Presentation 🛍 💅]
- Wehrend, Stephen C., and Clayton Lewis. 1990. "A Problem-Oriented Classification of Visualization Techniques & ." In Proceedings of the 1st Conference on Visualization, 139–143. Los Alamitos, CA: IEEE Computer Society. [Sowmya Achanta and Jae Eun Kum | Presentation 🗟 🗹
- Wilkinson, Leland. 2005. The Grammar of Graphics & . New York: Springer. [Trevor Edelblute | Presentation 🚉 🗹]
- Yau, Nathan. 2011. Visualize This: The FlowingData Guide to Design, Visualization, and Statistics & Indianapolis, IN: Wiley. (ebrary account & required to read/download)

Suggestions of other major works are welcome! We will add Kosslyn, 1989; Kindlmann & Scheidegger, 2014

Course Schedule

Part 1: Theory and Hands-On

- Session 1 Workflow Design and Visualization Framework
- Session 2 "When:" Temporal Data
- Session 3 "Where:" Geospatial Data
- Session 4 "What:" Topical Data

Mid-Term

- Session 5 "With Whom:" Trees
- Session 6 "With Whom:" Networks
- Session 7 Dynamic Visualizations and Deployment

Final Exam

Part 2: Students work in teams on client projects.

Final grade is based on Class Participation (10%), Midterm (30%), Final Exam (30%), and Client Project(30%).

69

Last 7 Weeks: Students Work in Teams With Clients

