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Applications of Rarefied Gas DynamicsApplications of Rarefied Gas Dynamics
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High-speed

 

Complex interactions: 
chemistry, internal 
energy exchange, 

ionization

Low-speed

New numerics 
& multiphysics



• Exploring low-speed microflows:
 Deterministic methods for rarefied gas flows:

 A-priori accuracy estimate: discrete H-theorem 
 FVM + Immersed boundary / cut-cell methods for moving 

boundaries
 Discontinuous Galerkin methods

 Example: understanding rarefied gas damping effects in 
RF MEMS switches by coupled fluid/structural/electrostatic 
analysis

• Exploiting microscale effects for microdevices:
Knudsen compressor for on-chip vacuum 
Knudsen force actuation/sensing
Field-emission driven microdischarges
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NASA/UVM micro-thrusterMIT micro-turbine USC micro-burner

Microscale Challenges:

•Gas-phase extinction limit, min Re~40. Catalyst needed
•Amplified heat transfer losses 
•Increased viscous losses: Isp drops for Re<200.    

Rarefied flow analysis provides methods for design to 
overcome these challenges
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Gupta, Ann, Gianchandani 
(UMich), 2012

48-stage: 
1350 mW, 1cm2

 760  50 or 250  5 torr

1-stage:  
1.5 W, 2 cmx2cm
 760  750 torr

Vargo and Muntz 
(USC), 2001

McNamara&Gianchandani 
(UMich), 2003

1-stage: 
80 mW, 2 x 2 mm2

 760  350 torr

Vargo, Muntz , Shiflett, Tang, “Knudsen Compressor as a Micro/Meso-scale Vacuum 
Pump”, JVST A, 1999: 

a cascade of multiple, individually heated compressor stages 
that exploit the pumping effect of rarefied thermal transpiration.
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Unsteady Boltzmann model kinetic equation for velocity 
distribution function: 

•ESBGK collision operator
 H-theorem proved by Andries et al, 2000.
 Conservative discretization by perturbed Gaussian by 

Mieussens, JPC, 2000.

FMV Solver:
•Discrete ordinates in velocity space with Gauss-Hermite 
•FVM in physical space with 3rd-order WENO fluxes.
•2nd and 3rd -order time integration with Runge-Kutta TVD 
schemes
•domain decomposition in physical space 

 

∂ f
∂ t

+ u ⋅ ∇ x f = 1
τ

( f0 − f )
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Chigullapalli, Venkattraman, Ivanov, Alexeenko, J. Comp. Phys,  2010
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1001 x(40x20x10)  mesh 

1st order 2nd order minmod 3rd order WENO

• Accuracy of numerical solution manifested in kinetic entropy generation 
rate.

• The entropy generation rate displays three peaks corresponding to the 
shock,  contact discontinuity and the rarefaction wave.

Chigullapalli, Venkattraman, Ivanov, Alexeenko, J. Comp. Phys,  2010



11

• The entropy generation rate as indicator of compatibility of BC.

Chigullapalli, Venkattraman, Ivanov, Alexeenko, J. Comp. Phys,  2010



IBM for Microflows: MotivationIBM for Microflows: Motivation
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Raman Group -Fluid structure interaction and nonlinear dynamics 
in RF-MEMS devices (part of the PRISM center for the prediction 
of reliability, integrability, and survivability of microsystems) 
Purdue University

High Frequency Micro Electro
 Mechanical Devices (MEMS)

*Czarnecki et.al, 19th IEEE Conference on MEMS, 2006 

Lifetime of switches tested at  35 V  and  100 Hz. 
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IBM Formulations: InterpolationIBM Formulations: Interpolation



C.K. Chu Kinetic theoretic description of the formation of shock ware, Phys. Of Fluids, 8(1):12, 1965
Y. Ruan and A. Jameson, Gas-Kinetic BGK schemes for three-dimensional compressible flows,  AIAA 2002-0550
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IBM Formulations: RelaxationIBM Formulations: Relaxation
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IBM Fluxes: InterrelaxationIBM Fluxes: Interrelaxation
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• ESBGK type collision approximation
• ESBGK-IB Methods are compared 

with ESBGK-FVM Solver
• Material Point Method Procedure is 

implemented for marking of 
background mesh

• Two different meshes having 10,800 
and 20,100 elements are used

• A quadrature of 14x14x14 is used

2m/s

2m/s

Air Density: 0.158 kg/m3

Air Density: 0.158 kg/m3

Solid - 10,800 cells; Dashed - 20,100 cells

min 1.9
IBx

IB

Kn
x
λ

∆ = = ∞ ≥
∆

IBM-ESBGK: 2D VerificationIBM-ESBGK: 2D Verification



IBM-ESBGK: Microbeam under 1E6 g IBM-ESBGK: Microbeam under 1E6 g 
Temperature Pressure

Width: 5 μm, Width/Gap0 = 2.5
Background mesh: 10,920 cells

Δx=0.1 μm, Δy=0.2 to 1 μm
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Max Velocity= 5.684 m/sΔt= 6.25 ns
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Time = 200 ns
Vbeam = 1.953 m/s 

Width: 5 μm, Width/Gap0 = 2.5
Background mesh: 10,920 cells

Δx=0.1 μm, Δy=0.2 to 1 μm

Time = 400 ns
Vbeam = 3.883 m/s 

Time = 606 ns
Vbeam = 5.684 m/s 

IBM-ESBGK: Microbeam under 1E6 g IBM-ESBGK: Microbeam under 1E6 g 
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Pressure and Streamlines for PRISM Gen5 Device during Pull-In



PRISMCGPRISMCG OnlineOnline ToolTool 
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0.1 atm: 
V=7.2 m/s
t=1.4 us

1 atm: 
V=1.4 m/s
t=4.6 us

 http://www.nanohub.org/tools/prismcg



ImpulsiveImpulsive Effects in SwitchEffects in Switch DynamicsDynamics

PRISM device:  
• L = 510 μm 
• b = 122 μm
• t = 4μm
• td = 250 nm 
• 1 atm air
• 150 V

5.5 μs

5.9 μs

6.2 μs

Steady-
state

• Flexural wave reflection from boundaries lead to stresses which are higher by > 2.5x 
compared to static.
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ImpulsiveImpulsive DynamicsDynamics and Switch Lifetimeand Switch Lifetime

• The maximum bending stress in the beam for a given voltage 
increases with decreasing pressure.

• The maximum stress is converted to cycles to failure using a S-N 
relation* for typical LIGA Ni.
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1/0.112

1031
a

failureN σ −
 =   

* T.S. Slack, F. Sadhegi, and D. Peroulis, JMEMS, 2009



 High-order deterministic methods 
• Discretizations of Coordinate Space

• Finite Difference Method & Finite Volume with high-order fluxes (i.e. WENO)
    Review by Luc Mieussens, RGD 2014. 
• High-order Finite Element / Discontinuous Galerkin methods
Lesaint & Raviart, 1974
• Spectral methods: work better on globally smooth functions

      

 Advantages of Runge-Kutta discontinuous Galerkin method
• Very suitable for  the solution of time-dependent hyperbolic and advection dominated 

advection-diffusion equations
• naturally obtain fluxes at the boundaries with the same high-order accuracy as in the interior 

of the domain 
• Efficient parallel implementation due to compactness of the scheme

Additional references: 
B. Cockburn and C. W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method 
for scalar conservation laws IV: The multidimensional case. Math. Comp., 54: 545-581,1990. 
A. Alexeenko, C. Galitzine, A. M. Alekseenko, AIAA Paper 2008-4256 
M. Alekseenko. Numerical properties of high order discrete velocity solutions of the BGK kinetic equation. 
Applied Numerical Methermatics, 61(4), 2011. pp 410-427
W. Su, A. Alexeenko, C. Cai, A Runge-Kutta discontinuous Galerkin solver for 2D Boltzmann model 
equations: Verification and analysis of computational performance, RGD 2012
W. Su et al, A Stable Runge-Kutta Discontinuous Galerkin Solver for Hypersonic Rarefied Gaseous Flows, 
RGD 2014. 

High-Order Methods for Boltzmann-ESBGKHigh-Order Methods for Boltzmann-ESBGK



 In each triangle, solutions fp
j are sought in the finite element space of 

discontinuous functions

 Basis Functions: supported in each triangle and dependent on the 
geometry  

• 2nd order: 
• 3rd other: 

 Degree of freedom
• Determined by the weak  formulation of the governing system

 Time discretizations
 Implicit Runge Kutta method up to 4th order
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RKDG for Boltzmann-ESBGKRKDG for Boltzmann-ESBGK



Numerical Flux and Boundary Conditions:
 The values of fp

j are discontinuous at the edges. Two-point Lipschitz 
numerical fluxes are used to replace the real fluxes

 The boundary values fp
j (ext(Ki),t) should be specified at the boundary edges

• symmetry boundary
• specular-diffuse moving wall with give accommodation coefficient
• periodic boundaries,
• far pressure inlet/outlet boundaries 
• supersonic inlet/outlet boundaries

Conservative Discretizations of the Collision Term:

 Specify the equilibrium distribution equation
• BGK model
• ES-BGK model

 In order to be consistent with the weak formulation of the DG method and to retain high 
order accuracy 

 the collision frequency and other macro properties can vary inside the spatial elements
        obtained from the weak formulation of mass, momentum and energy conservation 

for the collision relaxations 
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RKDG for Boltzmann-ESBGKRKDG for Boltzmann-ESBGK
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RKDG: 1D Heat TransferRKDG: 1D Heat Transfer
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RKDG: 1D Heat TransferRKDG: 1D Heat Transfer



• 2D Conduction problem: Kn=0.0018 (comparison to analytical 
solution for heated lid cavity heat conduction)

RKDG-3 

RKDG-2

RKDG: 2D Heat ConductionRKDG: 2D Heat Conduction
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Pressure Far Field - Maxwellian

Wall T=375K

375K 350K

RKDG:2D flow around thermal actuatorRKDG:2D flow around thermal actuator
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Coarse mesh in the lower gap
Max Face Error = 0.002

Refined mesh in the lower gap
Max Face Error = 0.0006

RKDG: Automatic Mesh Refinement RKDG: Automatic Mesh Refinement 
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Exploiting Rarefied Flows 
for Novel Microdevices 
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Crookes Radiometer: Transverse

Knudsen Compressor: Longitudinal
Crookes’ Radiometer
(Sir William Crookes, 1874) 



• Consequence of a thermal non-equilibrium 
between gas and solid

• Can be generated by resistive heating as well 
as optically Experimental data Passian et al, 
PRL, 2003  measurements using heated AFM 
probes
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FKn

Substrate



• Velocity Contours and Streamlines:
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ESBGK simulations for planar geometry with equivalent front-to-side area ratio 
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• Argon and Nitrogen simulations agree with experiments within 10%. 
• Deviation for Helium is about 80% at the maximum of Knudsen force. 

Nabeth, Chigullapalli, Alexeenko, PRE, 2011



 Closed-form model for non-dimensional Knudsen thermal force coefficient 
for uniformly heated beam:

  

CKn (Kn,
T

∆ T
) = ′  F 

wρ R∆ T
=

1+ D(
T

∆ T
)d + E (

T
∆ T

)e

AKn a + BKn b + CKn c

Force coefficient at T/ΔT = 10 Force coefficient at Kn = 2



Force Enhancement and ReversalForce Enhancement and Reversal

• Thermoelectric heating for bi-directional actuation (this work):
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FKn FKn

Substrate Substrate

+ polarity - polarity

FKn

Substrate

• Uniformly heated beam (Passian et al, 2003)
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ModelingModeling thethe KnudsenKnudsen ForceForce
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Simulate Knudsen force on suspended heating element using ES-BGK model
• 2D-2V finite volume solver with second-order upwind fluxes
• 8th-order Gauss-Hermite quadrature in velocity space 

75

46

20.

g

Parameter Value

Pref 298 – 
12,522 Pa

| ΔTb | 25 K

Tb,mean 326 K

Tsubstrate 298 K

Parameter Value

Pressure Inlet

Wall

All dimensions in mm

Richardson Extrapolation: 
160x160 mesh for force within 2%
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SimulationSimulation ResultsResults
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Experimental SetupExperimental Setup

40

Microcontroller

Magnetic 
Dampeners

Torsion Spring

Thermoelectric 
Heater

Reaction Plate

NI – RS68

LVDT



Experimental SetupExperimental Setup

41

LVDTElectrostatic Fins

Force range: 10  to 800 μN
Measurement Uncertainty: 1.0 μN 

Purdue LEAP  MicroNewton Thrust Stand



MeasurementMeasurement TechniqueTechnique
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g = 0.5 mm

g = 1.0 
mm

g = 1.5 
mm

g = 2.0 mm

g = 2.5 mm

g = 3.0 mm

60 s

∼ 3 μm Drift

• Measure displacement of reaction plate
• Sweep 0.5 – 3.0 mm gap size at fixed 

pressure
• Hold for 60 seconds to ensure steady 

state
• Apply linear drift correction

ts (2%) = 8.0 s 
• Calibration performed at the 

beginning of each test day
• Sweep 0 - 100 V, 30 seconds high, 

60 seconds low 
• Evaluate force from LVDT 

voltage



ComparisonComparison of Modeling and Experimentof Modeling and Experiment
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FKn

g (μm)

FKn

Maximum 36% error in CF,Kn between simulation and experiment
•Difference likely due to 3D effects in experimental measurements
•Errors likely stem from model inputs related to the heating element

Uniform heating

g=1

g=3

g=1

g=3



New deterministic and stochastic kinetic approaches 
needed to explore and exploit significant new physics 
emerging at the micro/nanoscale:

 Low-speed 
 Moving geometries 
 Coupling to structural/thermal/EM solvers

44

• DOE NNSA Center for Predicting Reliability, Integrity and Survivability of 
Microsystems (PRISM)

• NSF “CAREER: Quantifying and Exploiting Knudsen Forces in 
Nano/Microsystems”, CBET 1055453.
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