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NG
=2PD Introduction

e DSMC = Direct Simulation Monte Carlo

1963 Invented by G.A. Bird using physical/heuristic arguments!
“70s-"80s Improved collision schemes

‘80s Chemically reacting flow

1992 Convergence proof?

‘90s Low speed/micro flows

‘00s Hybrid methods and wider usage (research/open source codes)

* “Solves” the Boltzmann equation and easily extendable to multiple species/
phases, chemically reacting, ionized flows flows

e By far the most dominant methods for rarefied gas flows in the transition
regime

e (Often used to obtain a “reference” solution for moment methods

* Widely used in Aerospace/Materials processing

1Bird, G.A., Phys. Fluids, 6, 1518-1519 (1963).
2Wagner, W. J. Stat Phys., 66, 1011-1044 (1992)



=S#PD Formulation

e Discretize space using computational cells (mesh)

 Use N computational particles that represent oo ® °
W, ~ 10°-10%° physical particles = °
)
o o
number density /# of particles ° ®o o
\ _ Wp N Ce” ® o [ ) ®
n = o % o
V Volume =V ° f_
N = 2 (here) E’ _
« Split the Boltzmann equation particle
. 8
(1) Streaming of + U f =0
ot
(2) Collision / dvl/ dQY o UT‘ ( Z,v _’ 7t) f(fv 17’at) T f (fa ?717t) f (fa 6) t):|
R3 4

Kac master equation in reality when N < oo ..,

Sequentially “solve” Egs. (1) and (2) on the mesh at each time step using
computational particles.

1Bird, G.A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, OUP (1994)
2Rjasanow, S. and Wagner, W., Stochastic Numerics for the Boltzmann Equation, Springer (2005)



Formulation: Streaming

—0 (Vlasov Equation)

=k

1) Generate particles at inflows/Remove particles at outflows

2) Move particles

N fk+1
,i—]*k+1
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dz
dt
dv
dt
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T, U,t)dv dV; = P 1, |2,
Vol, /Celli R3 f(,0,1) dv Vol Z |




Formulation: Collision

—/
[ 3

State vector: \pb
V = (U1, T, ... ,\TN_1,0N s o/
(T OV ) - ®Up Y,
Joint PDF of all the N particles in the cell: /Uaj/".':.! o o

- 1

ip = FN (V) Ay Ty ... dy_y diy 7

\
V= o
Ula U2> . ’UN 1 'UN) Before collision

—»/ NEASIREN After particles “a” and “b” have collided
ab (’()1,’02, . aa} Uvba) UN lavN)
-~

, Before collision
Master equation

4 |
(Wz% > /%b”va U | [FN( ab )—FN<I7,t)] de

1<a<b<N
$ N

N _ Vol ¢
F ( ) Hf 0, ) After collision

\
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NG
PD Formulation: Collision
aFNa(tV t) _ W Z / ool s — B [FN( - > _pN <f/’,t>} dé
1<a <b<N
(V,O) = wow Hf(oﬁj)
Linearin F "

RHS Identical to Boltzmann collision operator in the limit of N >0
(propagation of chaos)
- Wy
Veoll (V) — ﬁ /S2 0ab||va Ub”de

1<a<b<N

8;’:’ (V t>-|—l/c011F (V t) 3,21 Z /JabHva oy|| FN ( ab,t) de

<b<N

DSMC = Create a Jump Markov process to solve (**)
Collisions in a cell follow a Poisson process

— Time between collisions follows exponential distribution

Collision Mechanics
— Preserve collision invariants

— Reproduce transport properties in equilibrium

(**)
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#PD

e Various collision schemes developed over the years

Formulation: Collision

* One of the most important contributor to error in DSMC simulations but

accuracy difficult to gauge a priori

* Most widely used is the No Time Counter (NTC) scheme:

— Compromise between accuracy and computational cost

— Does not give accurate results when N < 20

1) Determine # of potential collisions during At

., k1
nAt XA
NCOH - T(N o ]‘) (O-U"')ma,x NCOH = 2 . 1“’.‘:“\‘ ”9.,_.:_"
U2+/"' o ® PS
2) Determine whether collision OCCl;I’eSS L = Oy (5, 75 TY)
o || U5 =Y Uy = Ceon (03, 9777)
Pcoll(]-, 2) =
(O—U”')max

No Velocities unchanged
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H#pPD | -
2008 Formulation: Algorithm
— For all time steps k=0,...k,,

1. Move particles during At
2. Ineach cell, perform collisions between particles
3. Generate/Discard particles at boundaries

4. If in steady state sample cell properties
—— EndFor

Constraints to satisfy

— At < mean collision time
— Particles cross less than 1 cell/timestep

— Ax < mean free path
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#PD Motivation
Flow continuum slip transitional | free-molecular
Regimes: ) - T "
Kn 0.01 0.1 10
“ DSMC s
Model < Boltzmann Equation >
ier- Collisionless
Accuracy: Navier-Stokes | IB : _
_Euler | . Burnett | oltzmann Eqn
| 1 Moment
Methods high
Numerical -
Performance: » DSMC
! 7 i 7/ i >
Kn 0.01 0.1 10
low

Accuracy + }
Performance J ——>hybrid approach
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2P D Motivation

e Kinetic theory-based simulation techniques, e. g. Direct Simulation
Monte Carlo (DSMC) method, are required for nonequilibrium
regions

— Applicable for both continuum and rarefied flows, but
computationally expensive for continuum flows

 Computational Fluid Dynamics (CFD) methods are numerically
efficient, but physically inaccurate where continuum assumptions
are invalid

* Hybrid solvers are an attractive alternative for transitional
hypersonic flows

— Continuum breakdown parameter used to divide the flow field into
domains analyzed using two different, yet coupled, solution
techniques
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>80% of the cost of this DSMC simulation is spent solving
near-equilibrium regions of the flow field!

12



PD Practical applications

Flows in a mixed continuum/transition regime are important for
some Aerospace applications
— Capsule Aerothermodynamics at high altitude (z = 70 km)

— Nozzle expansion flows
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§E§:3P D Formulation

e Hybrid framework that loosely couples a DSMC code (MONACO1)
with a CFD solver (LeMANS?)

— MONACO
* General, cell-based implementation of the DSMC method
— LeMANS
* Second-order accurate, finite volume CFD solver
e Current capabilities

— Physical accuracy and numerical efficiency demonstrated for
axisymmetric and 2D flow domains

* Requires a significant programming effort!

IDietrich, S. and Boyd, I.D. Scalar and parallel implementation of the DSMC method, JCP (1994)
2Martin, A., Scalabrin, L.C. and Boyd, I.D., High performance modeling of reentry vehicles , JPCS (2012)



=P D Formulation:

1. Obtain converged CFD solution
2. Calculate and apply continuum breakdown parameters
— Gradient-length local Knudsen number? Kn,.

KnGLL-Q - é‘vg‘

Kn <0.05 ws==) Continuum regime (CFD)

GLL-Q

Kn >(0.05 =) Transition regime (DSMC)

GLL-Q

3. Employ MONACO to obtain DSMC solution in particle regions

1Schwartzentruber, T. E., Scalabrin, L. C., and Boyd, I. D., JCP (2007).
2Boyd, et al., Phys. Fluids, 7 (1995).

15



Formulation

4. After hybrid interfaces cease to move, transfer information to CFD via
boundary conditions

— Sub-relaxation average of Sun and Boyd used to mitigate statistical
scatter at hybrid interfaces

0,=(1-0)-0,,+0-Q,
5. Progress CFD solution a specified number of iterations

Transfer information back to DSMC through generation of simulator
particles at hybrid interfaces

7. Continue hybrid cycling until interfaces cease to move, after which
proceed with standard DSMC and CFD procedures



PD Formulation

Converged CFD
Solution from LeMANS

J

v

Calculate Continuum
L Breakdown Parameters

J

CFD? )<

LeMANS

A 4

»{ DSMC?

[ Refine CFD Mesh |
| (first time only)

J

A 4

Calculate Continuum ]
Breakdown Parameters J

.
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| Generate Particles

in DSMC Cells

J

v

[

Generate Particles in
DSMC Boundary Cells

Update Macroscopic 1
Properties

MONACO

]h

17



Computational Fluid Dynamics
(LeMANS)

Macroscopic
Properties

CFD/DSMC Interface

DSMC Boundary Cells
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Direct Simulation Monte Carlo
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#PD Coupling: CFD -> DSMC
* On a macroscopic level, the solution obtained using CFD can be used to

completely define a Chapman-Enskog VDF

— Chapman-Enskog VDF represents a first-order approximate solution to
the Boltzmann Equation

— Perturbation term incorporates mass diffusivity, viscosity, and thermal
conductivity

SUE V)= 93, ,0) £ V,0)
| |
Chapman-Enskog VDF Maxwellian VDF

* An acceptance-rejection method proposed by Garcia, et al.! is used to
sample random thermal velo'fities from a Chapman-Enskog VDF
f(u)

Macroscopic Molecular
Properties Properties

1Garcia, et al., J. Comp. Phys., 140 (1998).



e Mach 12
* Kn_0.01
° N2

Error = |Hybrid — Full DSMC|

 Error <5% (most of the domain) ..

0.1

-0.05

* Error <10% (all of the domain)

_—

Flood: DSMC

Lines;\MPC

Ttrans [K]

7000
6000
| 5000

Flood: DSMC
I Lines; CFD
L | L

4000
3000
2000
1000

0 0.1
X [m]
Test Case Speedup Memory usage
Kn =0.002 28.1 75%
Kn=0.01 2.94 28%

*Deschenes, T. R., Holman, T. D. and Boyd, I. D. JTHT (2011).

0.2

20



#=PD Challenges

* Which regions should be simulated using DSMC and which
regions should be solved using CFD?

— Requires a measure of continuum breakdown

— Goal is to achieve a balance between physical accuracy and
numerical efficiency

* This usually means that a CFD solution is used to guess
where the hybrid interfaces should be placed, but CFD does
not give a completely accurate picture

— Most measures of continuum breakdown are heuristic, either in
their formulation or in their choice of cutoff value

* No guarantee of applicability to every flow field
e Difficult to implement

— Need a DSMC and a CFD code
— Internal energy and chemical reaction adds complexity



Increasing the computational efficiency of
DSMC

An Adaptive procedure for the time step and weights™

*C. Galitzine and I. D. Boyd, J. Comp. Phys., Accepted (2014).



§§NG Adaptive Procedure
108

=P D Motivation/Applications

Flows with large scale disparities

n(Ar) [m-3]

0.1 1.0E+21
3.7E+18
6.5E+17
3.4E+17
2.5E+17
1.0E+17
1.0E+15

n(Ar*) [m-3]
E 1.0E+20
2.7E+18
5.0E+17
1.7E+17
-0.1 5.0E+16
1.0E+15
0 0.05 0.1 0.15 0.2 0.25
x [m]

« Trace species in chemically reacting/radiating flows

23
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2P D Motivation: Cell/Species weights

number density / Volume
W, N; \nsz
# of particles N\ Cell weight

« n(x) or V(x) widely vary for many flows (esp. Axisymmetric flows)

« Different species have different number densities and
distributions

N is either very large or very small

Standard DSMC algorithm very inefficient for multispecies flows with
large density variations

24
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2P D Motivation: Time step

At < Mean collision time ~ n~! x T—1/2
At < 0.1 ﬁ)—“)"\@ No more than 1 cell crossed / time step

/ Cell length

Average particle velocity

e n(x), <v>, Ax all vary widely for many flows

« At only dictated by a small portion of the flow

« Low At produces large time correlation of samples

DSMC algorithm with uniform At very inefficient for flows
with large density, velocity or cell size variations

25
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§§-"P D Spatially varying weights & time step

1) Vary cell weights in space

nsz‘\ Volume

N; =

Wp,i “— Weight of cell i
2) Introduce species relative weights number density of species j in cell i

# of particles of species jin cell i /
\N Mg V
) Wp, Wrel,a 1
3) Vary time step in space \ Relative weight of
speC|es
At = At; Woal < 1

* Spatially varying weights and time step are widely used Set before
* Uniform species relative weights are widely used the simulation

26



P D Goals

Ill”

1. Determine {Wy,i}i and {Wtel,;i};,i to have Npwant particles for al
species in all “i” cells.

III 1

2. Maximize Atjin al cells

o {Wyp,i}i, {Wrelji}ii and {Ati}i have to be tailored to each individual
simulation

« Have to be determined during the simulation: “adaptive”

. Have to modify DSMC collision/move algorithm

27
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2P D Spatially varying weights & time step

- Need to change particle movement procedure when W, W or At

varies in space to conserve fluxes between cells

rel

Weight = W,

Weight = W /2

* Cloning procedure is a source of error
— Particles with identical properties cause samples to be correlated
- Collision rate is inaccurate P, ~ (0g) ~ (o||[va — UB||)
— Difficult to quantify

* Error important at high Kn with few collisions



NG Adaptive Procedure
'::P D Integration in a DSMC code

—  For time step k=0,....,Nstep

« “Independent” of DSMC algorithm
« Fairly easy to implement in existing DSMC codes

29



P D Formulation: Weights: UpdateW,()

{W,,i}i is periodically updated during the convergence to steady state

— Forall icells

1. Update weights

2.  Smooth weight
Laplacian smoothing V2W§+1 =0

3. Limit variations and bound values

1 Wk—+—1 .
4. Updateflow 2 Wk <2, Wpmin < W™ < Wp max
Wkt1 Wk
Create/destroy particles ~ U P — = 1 Nk-H Nk. Pt
Wy 3t Bt prktl

___ EndFor Pt



Axisymmetric geometry
3 species

Knudsen number =0.01
Mach number =1

Species #1
1.25 10 m™3

Species #3
1.2510%1m?3

Test Case

0.1}

-0.15

[m?]

1E+22
1E+21
1E+20
1E+19
1E+18
1E+17
1E+16
1E+15
1E+13

n 1E+11

x [m]

0.01

0.005

—

E

Nl

>
-0.005

-0.01

(“Trace” species)

0.0020.0040.0060.008 0.01
x [m]

0.23 0.235 0.24 0.245 0.25 0.255
x [m]

0 00507 01502 02503 035

Species #2
jet 2 1.25 103 m?3

31



Results- Wp, At

0.004 0.008
x [m]

0.15

25
5
0.1 25
05
0.25
0.05 0.05
—_ 0.02
f'\~ 0.0005
-~ 0.0001
] 10
0.05 5
1
-0.1 0.5
0.1
] 0.05
0.15 0.025

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
x [m]

32



0 0.0020.0040.0060.008 0.01

X [m]
0.15¢
Wrel,1
0.1f
0.053-
T L
-0.05¢
0.1F
rel,2 ||
“0-155-6:05 0.1 0.15 0.2 0.25 0.3 0.35

X [m]

X [m]

25

0.1
0.01
0.001
0.0001
1E-05
1E-06
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#PD Comparison with standard DSMC

« “Standard” = {weight + time step}

Same # of particles
« Adaptive = {weight + time step + relative weights}

- === Standard
[ ] | [ — Adaptive | | |
88E+17 25E+18 4.7E+18 7.6E+18 1.1E+19 2.5E+19 [m-a]

2.4E+14 56E+15 7.4E+16 4.5E+17 9.7E+17 [m”]
0.015

0.1}
0.01
0.05
! 0.005
E o E o
> >
I -0.005
-0.05
-0.01
-0.1
1 | | ‘0015
0 0.05 0.1 0.15 0.22 0.23 0.25
x [m] x [m] [

315 579 798 922 992 1085 [m/s] -118 20 100 222 333 [m/s]

34
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2P D Comparison with “standard” DSMC

« Large error reduction observed for the same total number of particles

———  Adaptive, 10 M particles

------
L] .
.......
-

-
- .
''''''

-

Adaptive, 38 M particles, Sampled n |
Standar

Standar
Adaptive, 38 M particles, Sampled V, ,
‘S\tdanc{iar 10 M particl
aptive articles
Stanpd d p 1 I | | 1 !

35
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38 ,
#PD Conclusions

e “Standard” DSMC very inefficient for certain flows
— Multispecies flows with large density gradients - Adaptive method
— Low Mach number flows (not discussed here)

* Have to modify procedure to improve efficiency
— Multiple formulations possible
— Introduces new problems

e Could Moment Methods be a viable alternative?
— For low Kn, YES
— For high Kn, NO = Direct Boltzmann solver



Quantifying the error in DSMC simulations

A Framework for error analysis in DSMC”

* C. Galitzine and I. D. Boyd, Submitted to JCP (2014).

37



=P D Error Framework

* Sources of error considered:

1. Not enough samples

2. Not enough particles

Numerical Error _
3. Too large time step

o Other sources of “error” are ignored:

1. Effect of mesh

Convergence Error

2. Non-convergence to Boltzmann equation

3. Inaccuracies of physical models / actual gas

38
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1300 Error Framework: Convergence error
Def: convergence error = Ensemble standard deviation of estimator
1/2
~T~k] _ (/A~k ~ K\ 2
& [Hl] = (<M2> — <.U1> )

« Obtained by running multiple simulations and calculating variance of
estimator

« Monotonically decreases when k — oo

« No Residgogzl to evaluate convergence in DSMC simulations

AR
|

o
4
4

\ i b T
[y AT Ay m i IFYTRALY

o
4]

Ensemble average + convergence error

Ensemble average | @A

(T
1
|

o
»
a

w!" i

o
»

o
W
a0

o
w

Ensemble average - convergence error

Sampled mean number density

o
()
o

10 10 10
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E:::P D A central limit theorem to predict
convergence error
R 1 _
(¥ (n) = P (n +n' + ...+ nf71 4 nk) lim 47 (n) = p (n)
If samples were statistically independent:
/Normal distribution
Var (n) -k Var (n)
~k ~J
Var () = Y2 g ) ~ A (i (), ¥
—Central limit theorem \
BUT samples are NOT statistically independent:

= Convergence error

Var [pf (n)] ~ Var Z =)

k |
/ i ) ~ A (12 ), )

'yn(k’)éE[nk X k+k]— XE[ k;

—~Extended central limit theorem

Allows the calculation of the convergence error from the autocorrelation spectrum
40
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533':P D Evolution with number of samples

« Extended central limit theorem predicts evolution very well

« Can be used to predict convergence error (and the number of steps
required to achieve a specified convergence level)

« Correlation results in large increases in observed standard deviation

0 0

10 10
Cell 4
Cell 1
~——0bserved
107} - 107}
£ £
3 2 /
3 o .
1072 ‘ 1072 predicted
1/
a 10
10 2 4 6
10° 11(24 10° 10 / ‘f(’ 10

No correlation a1
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§E:..PD Error Framework: Numerical error

DSMC samples depend on numerical parameters:

p1 (nWpl{Af) = lim /A‘If (n)

/ \ k— 00

Number of partlcles_ Time step
(Each computational particle represents
Wp physical particles)

Def: numerical error = Error dueto Wp#1and At #0

€ [V’l (nv Wp: At)] — |V’1 (nv Wp7 At) — M1 (n’ Wp07 Ato)l

I

Numerical error Exact solution

« The “Exact solution” is obtained by varying Wy,—>1 and At—->0 up until no
variation is obtained in the solution (similar to grid convergence study for
CFD)

42



DSMC Error
Test Case

« Simple Argon gas, axisymmetric geometry, fixed quad mesh (Ax/A)max= 0.7

« Spatially constant particle weight W, and time step At

« “Complex” test case, not channel flow

0.14-

Flow Condition:

0.04
M =1.0 0.02-
Kn =0.01 S i N

Number density [m?]

2.9E+21
7.0E+20
1.5E+20
5.0E+19
2.6E+19
1.1E+19

2.9E+18
2.2E+18
1.7E+18

.02 ' 0.04 ' 0.06 0.08
X [m]

43



Test Case

« Study focuses on cellwise error (# global error)

« Cellwise error of greatest interest to practitioners

Error examined in discrete cells of the simulation

0.08 |-

0.04

y [m]

T l T T T T l T T

12

— 1

0.001}

0.00051

0.0005
|

0.001

—

0.007

0008 001 0012
1 1 1 l

44



Influence of the number of particles

« No relation between error and number of particles

. o —
« Power law observed for the numerical error for n and V e=0CxN
« Large spatial variations observed for Cand a
- -1
10 10 '
—slope -0.95
Cell 1 n ——slope -0.73
. -
1072 0.0 0O 1072 +
+
O
~ C + —_
$ 107 e G107
—slope -1.13 / &
—slope -0.23 -
107 107}
Vx
-5 -5
10 10 i
107 10” 10° 10' 10 10’ 10° 10°
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0.15

0.1

0.05

Error

Na

« Large spatial variation of scaling exponent

Coherent patterns observed

46
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Spatial Variation

« Numerical error follows coherent patterns dictated by trajectories of particles

1. Error generated in highly collisional zone

2. Few collisions - error propagates

3. Particle mixing = error cancellation

absolute value of error (n)

0.004

X

0.0005
[m]

2-Free molecular flow (error propagation)

0.015f

g

o

purd
T

0%hos5 0.01 o
X|im

0.15

0.02 0.025

signed value of error (n)

[m]

1- Error generation zone

0.1
0.05
0.03
0.01
0.005
0.003
0.001
0.0005
0.0003
0.0001

0.05
x [m]

0.0005
x [m]

% 0002 0.
X

004

0.001

0.015

.01

0.005

OQ)OS 0.01 0.015 0.02 0.025
x [m]

0.1
0.05
0.03
0.01
0.005
0.003
0.001
0.0005

Ml
066606600
“¥82838888
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=SPD Conclusions

Can predict a priori the convergence error
- Significant for high speed flows without many collisions
- Overlooked/Not considered by many

Not being able to quantify the numerical error a-priori is problematic
- Cannot use PDE error analysis framework
- Have to consider the modeling of collisions

Very little research on this topic



HNG Summary
1300 3 Challenges for DSMC

Simulation of low Kn flow

Hybrid DSMC/CFD
— Breakdown criterion not general enough?
— Need to quantify accuracy
— Onerous to implement

Numerical efficiency of DSMC

Adaptive technique
— Non standard DSMC necessary for many flows
— Not very rigorous/introduces additional error

Error quantification
Error analysis framework
— Numerical error difficult to predict/quantify
— Numerical method and physical model are intertwined



Thank you!
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##2PD Formulation: Time step: UpdateAt()

{Ati}i is periodically updated during the convergence to steady state
—  Forall icells

] Aa:z < . < ] Amz
1. Update time step{ 0.05 7y = At < 0.1 OF

Atz' S 0.2 Tmct,i

2. Smooth time step

Laplacian
smoothing V2AtEt =0

3. Limit variations and bound values
1 AFt!

<
2 Ath

<2, Atgin < AP < At oy

4. Update flow

A EndFor



Weight & At set 41 10 ___________

atk=0 Iy
o |
%J 31 \ Adaptive method
5 2s) — A400
a 2 —A100
° % ---S400
_‘é 1.5;' ---§100
- 1:, -------
Z |

0.5/
% 2 4 6 8 10

Number of steps

x104

Steady state

52
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##2PD Distribution of number of particles

« “Standard” DSMC very inefficient for
test case

Bl A400, mean=214.9
Bl S400, mean =308.8

« Greater efficiency achieved by
better distribution of particles

15000 20000 25000

Number of cells
10000

« Greatest benefit for flows with U
shaped distributions for N

5000

0
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Time correlation of samples

« Correlation of samples characterized by autocorrelation function
« Samples are very correlated not statistically independent

« ldentical correlation function observed for n and V

Cov (YF,Y¥*+) 2B [YH+ V| —E [Y* | < E [v*]

—p(N) ' —(N)
0.9} Cell 1 :pggV)z) i 0.9 :ﬁg%/)z)
0.8 Nz, 0.8 —p(N, XV,
0.7 0.7
Cell 4
7/ /
0.6} N | Cov (Yk ’Yk +k‘> 0.6
Q0.5 — — Q05
p(k) =
0.4 V - Var (Y) 0.4
0.3 / 0.3
k/ k/ .
ol A Var (Y) = Cov (Y Y ) 9
0 5 11? 15 20 0 50 100 150
) k 54
time step

time step



