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Space weather modeling

aerospaceweb.org

Supersonic solar wind constantly bombarding Earth

m Solar wind = stream of energetic charged particles from Sun

Earth’s magnetic field = sets up magnetosphere, bow shock, ...

Solar flares can create geomagnetic storms, which can affect space satellites

Challenge: accurately predicting space weather in real time

J.A. Rossmanith | ISU 4/46



Reconnection Problem Momen

Reconnection site

Proton jets

Magnetosphere

Shocked
solar wind

ZGsm
Xasm %g Yasm

m Magnetic field lines from different magnetic domains are spliced to one another

IMAGE SI-12
field of view

[Frey et al., Nature, 2003]

m Creates rapid outflows away from reconnection point
m Outflows have important affect on space weather, can affect satellites, . ..

m Can happen both on the dayside as well as in the magnetotail
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Reconnection GEM Problem Moments vs. Multi

Collisionless magnetic reconnection
By = A‘y and By = —A'X

/———_ \L

-
P

Starting point: oppositely directed field lines are driven towards each other

Field lines merge at the so-called X-point
m Lower energy state: change topology of field lines

m Results in large energy release in the form of oppositely directed jets
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Collisionless magnetic reconnection
By = A‘y and By = —A‘X
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-
o

Starting point: oppositely directed field lines are driven towards each other

Field lines merge at the so-called X-point
m Lower energy state: change topology of field lines

m Results in large energy release in the form of oppositely directed jets
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GEM Reconnection Problem using Fluid Models
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Hierarchy of plasma models

Particles — kinetic — hybrid kinetic/fluid — fluid

Full particle description: computationally intractable

Kinetic description:
B Fully Lagrangian description via macro-particles
W Particle-in-cell description
B Semi-Lagrangian description

W Eulerian description

Hybrid description: ion particles, electron fluid

Fluid description:
B High-moment approximation (moment-closure)
B 5-moment approximation (Euler equations)
W Hall MHD (quasi-neutrality == single-fluid system)
B MHD (ideal Ohm'’s law)

J.A. Rossmanith | ISU 10/46
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Mathematical models

Two species models: (1 ion, 1 electron)
m Vlasov-Maxwell model:

of.
= fv- fos+ (E+v><B) Vyfs =0,

REREEN Y

V.B=0, V-E=c’c,

= QS /fsdv = qs /vfsdv
ms
m Two-fluid 10-moment model (Generalized Euler-Maxwell):
Ps 1
PsUs :/ v | fsdv {closure: QEO}
Es %vv
%
Ps Ps Tm—1
fs(t,x,v) = —F———exp [——(v—us) P (v—us)]
T (em)f VeetPs - 2 )
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Mathematical models

m (cont'd) Two-fluid 10-moment model

o | Ps PsUs G 0
ot psus| +V- psusus + Ps = m, Ps (Es +us xB) s
Es 3Sym (ugEs) — 2psususug 2Sym (%spsusEHEs X B)
J [B E 0
at [E] v [fczs} = chJ]’
V.B=0, V-E=c%c,
gs gs
=y = J=y 1=
Y z;, M Ps; z;, me PsUs
m Two-fluid 5-moment model (Euler-Maxwell):
Ps 1 1
PsUs :/ v fsdv {closure: P= §trace(]P’)]I},
Es ; [v[[?
2-57d
fs(t,x,v) = Psid exp [—& (v—us)" (v— us)}
(275[35)5 2ps
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Mathematical models

m (cont'd) Two-fluid 5-moment model

Py PsUs 0
o psus PsUsUs +psl| = ,%ssps(EJrUs xB)
us (Es +ps) ,%SSPSUS'E

; [i o el =[]

V.-B=0, V-E=_c%,
Qs Qs
o= —_ s Jd= —_ u
E,msps Es msps s

m MHD models
_ Piui+pele

Quasi-neutrality — =pPi+Pe,
y pP=pitPe 0/t Pe

) p:pl+pe

c—ow — VxB=J

J.A. Rossmanith | ISU 13/46



GEM Problem

Mathematical models

Reconnection Moments vs. Multiphysics Vlaso

m Generalized Ohm’s law:
E=Bxu
+nJ
+(m5m) uxB
+5 V (mepi — mipe)
+ 2 {30+ V- (ud 4 du -+ Pmgg) |

m (cont'd) Resistive MHD model

P pu
9 |pul .| puu+t(p+3|B|*)T-BB | _
a | E u(Z+p+3|BJ?) ~B(u-B)
B uB — Bu
V.-B=0

Conclusions

(Ohm’s law)
(resistivity)
(Hall term)

(pressure term)

(inertial term)

0
0
nV-[Bx (V xB)]
nAB

J.A. Rossmanith | ISU
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4 Fast magnetic reconnection

GEM challenge problem

A brief history
m Ideal MHD does not support magnetic reconnection
m Resistive MHD allows for slow magnetic reconnection
m [Birn et al., 2001]: Geospace Environment Modeling (GEM) challenge problem
[Shay et al., 2001]: need g—‘t’, V.P, or nd in Ohm’s law to start

m Rate is independent of starting mechanism, important term is Hall: ~J x B
m [Bessho and Bhattacharjee, 2007]: in pair plasma important termis ~ V- P

m [Lazarian et al, 2012]: fast reconnection in resistive MHD via turbulence

Reconnection rate vs. solution structure
m Rate of magnetic reconnection is robust to many different models
m Hall MHD, various 2-fluid models, MHD with turbulence: all show similar rates
m Kinetic simulations show certain pressure tensor structure

Our goal: higher moment models to match kinetic solution structures

J.A. Rossmanith | ISU 15/46
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GEM: Resistive MHD (

Reconnected flux vs. time
25 . . . . . .

rhoatt=20

05

Batt=20 Batt=40
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Reconnection GEM Problem Multipk

P GEM: 2-fluid 5-moment (m;

lusions

Reconnected flux vs. time

05

Batt=16

tho, att =20
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' GEM: 10 and 20-moment with relaxation

[Johnson, 2011]

BGK Relaxation in higher-moment equations:

pt+V-(pu)=0
(pu) ;+V-(puu+P) =0

1
E:+V-(3uE —2puuu+Q) = E(pH—IP’)

3PP
Fi+V- (4u]F— 6uulE 4 3puuuu + T) =——Q

Chapman-Enskog expansion:
(pu) + V- (puu+pl) = eV2u+0(¢?)

m 10-moment with relaxation: we now have physical viscosity, not just numerical

For arange of 1 0 < &€ < 1, we get fast reconnection

Furthermore, we can reproduce off-diagonal pressure from kinetic models

20-moment with relaxation: we now have non-zero heat flux

J.A. Rossmanith | ISU 18/46
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4 GEM: 10-moment with relaxation (m;/me = 25)

[Johnson, 2011]

10-moment: P att=18/Q
exy i
2 0.02 I
0 — - 0
- —
2 -0.02 ¥
128 x 128
-10 5 0 5 10
10-moment: -P__att=18/Q, P,
exz i 32
2 Io.o1
|- N e |

-10 -5 0 5 10 18 x 128
10-moment:-P_ att=18/Q.
eyz i

Ry

32 - ]
2 Io.o1
0 — -— - 0 ¥ — c-_.

— - o =

2 l-o.m

32

128 x 128

-10 -5 0 5 10

m Conclusion: qualitative agreement

m Missing ingredient: heat flux = need to go to higher moment models

0013389

0008395

0000000

006995

0013983

0019778

0009383

0000000

Dcossee

0019778

0000000

0006323

0008647
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4 GEM: 20-moment with relaxation (m;/me = 25)

[Johnson, in prep]

20-moment:P_ att=16/Q 3 o0t
had ! x 10
0008395
2 5 .
0000300
o — - o
- - -
0006995
* -5 : gt
10 5 [) 5 10 128 x 128
20-moment:-P_ att=16/Q, P 0019778
32
2 0.01 0009380
: -3 = o |
2 0009889
-0.01 3
10 -5 0 5 10 a8 X VERL Rl
20-moment: -Peyz att=16/ Q, 3 0008547
x10
2| 5 0004323
0 —.; o 0 0000000
- A s -
- 0004323
2 -5
-10 5 0 5 10 s = 12g W occmr

m Conclusion: better qualitative agreement

m Missing ingredient: non-zero kurtosis: K =R — ¥
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4 Moments vs. Multiphysics

Summary of higher-moment approach:
m Can get good qualitative agreement on GEM challenge problem
m Need to artificially introduce collisions (kinetic system is collisionless)
m Simulations are challenging due to density and pressure positivity violations
m May need very large number of moments in very rarefied regimes

Other micro-scale phenomena may not be well-captured (open problem)

Multiphysics approach (i.e., domain decomposition):

Use low-moment fluid solver where possible

Use kinetic solver where necessary
Challenge #1: how to communicate between different solvers

Challenge #2: how to adaptively choose regions (a posteriori error estimates)

Many options for models, coupling mechanisms, numerical methods, ...

J.A. Rossmanith | ISU 22/46
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State-of-the-art: Hall MHD + IPIC

[Daldorff, Toth, Gombosi, Lapenta, Amaya, Markidis, & Brackbill 2014]

) 20 0 o 0 2 20 0 0 10 W 20 0 0 10 20
x X

m Whistler wave example: Implicit PIC code region embedded in Hall MHD model
m Restriction (PIC +— Hall MHD): modified Ohm’s law
Prolongation (Hall MHD +— PIC): boundary conditions of PIC region

Disadvantage #1: consistency problems between models (quasineutrality)

m Disadvantage #2: PIC introduces statistical noise
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' Vlasov-Poisson system

Electrostatic approximation

m Some simplifying assumptions:
Two species: ions (+) & electrons (—)
Slow moving charges —= electrostatics

Track electrons, assume fixed background ions

m Electrons are described by a probability density function:
f(t,x,v) : Rt xR xR - R

Moments of f(t,x,V) correspond to various physical observables:
1
p(tx) = / fav, pu(t,x):= / vidv, E(tx):= 5/ Iv[|2 f dv
m The Vlasov-Poisson system:
ft+v-Vyf—E-Vyf=0,
E=—Vx0, —Vi0=po—p(t,x)

J.A. Rossmanith | ISU 25/46
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Vlasov-Poisson system

Properties

m Characteristics (Vlasov is an advection equation in phase space):
daX av

(X(t;x,v,s),V(t:x,v,s)) = o =V(1), in —E(t,X(1)),
F(t,x,v) = fo (X(0; £,%,v), V(0 ,x,v))
m Maximum principle:
0 < min fo (x,v) < f(¢t,x,v) < max fy (x,v)
(xv) (xv)
m Conserved functional:
d%//G(f)dvdx:O = Lpnorm: G(f) =|f|°, entropy: G(f) = —fInf
xXJv

m Conservation laws:

d
Mass: pt+ Vx-(pu) =0, —/pdx:o
' dt Jx

d
Momentum:  (pu) ;+ Vx - (puu +P) = —pE, E/pudx:o

1 d
Total energy: (£+ §||E||2) +Vx-F =0, dt/ <f+*||EH2) dx=0
't
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Mixed Fluid-Kinetic Solver
m Fluid and Kinetic Solvers
m Quadrature-based Moment Closure Models
m Restriction and Prolongation
m A Numerical Example
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Mixed Fluid-Kinetic Solver
m Fluid and Kinetic Solvers
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Mixed Solver

1+1 Vlasov-Poisson:
fe+vix—Efy =0, Ex=po—p(tx)
Kinetic solver
m Operator-split semi-Lagrangian DG scheme (dogpack-code.org)
m In current experiments: global kinetic solver
m Work in progress: local kinetic solver
Fluid solver
m Standard RKDG scheme (dogpack-code.org)
m Solve the “20”-moment model of [Groth, Gombosi, Roe, & Brown, 1994, 2003]
Coupling
m Kinetic — fluid: correct moment-closure
m Fluid — kinetic: quadrature-based moment-closure reconstructions

m Why couple fluid back to kinetic? keep model consistency

J.A. Rossmanith | ISU 29/46



Reconnection GEM Problem Moments vs. Multiphysics Vlasov-Poisson Mixed Solver Conclusions

Gaussian-based moment closure

[Groth, Gombosi, Roe, & Brown, 1994, 2003]

m Knock-out missing moments by pretending they come from a Gaussian

20 —moment: R « 3PP/p (Kurtosis: K=R—3PP/p=0)
35—moment: S « 10pPQ

m Example: 20-moments in 1D (reduces to only 4 moments):

P pu )
= pu and  f(q)= ppu
= p+pu? 9)= ] q+3pu+pu®
q+3pu+pu® 3%—|—4qu—|—6pu2+pu4—i—(K:O)

m Four eigenvalues of flux Jacobian:

l:u+s\/§ s*—6s® —4sh+3=0, h=9/P
p pVp

Advantage: no direct moment inversion

m Disadvantage: limited hyperbolicity:  |h| < v/ V8—-220.9102

J.A. Rossmanith | ISU 30/46



Reconnection GEM Problem Moments vs. Multiphysics \ Mixed Solver Conclusions

Outline

Mixed Fluid-Kinetic Solver

m Quadrature-based Moment Closure Models

J.A. Rossmanith | ISU 31/46



Reconnection GEM Problem Mome / physics Vlasov son Mixed Solver Conclusions

' 1D quadrature-based moment-closure

Basic idea [Rodney Fox (ISU) et al]

m Assume that distribution is a finite sum of Dirac-deltas:
N

f(l‘7X7 V) = Z (,()k(I,X)S(V—,le(t7X))

k=1

m NOTE: This is reminiscent of PIC, except physical space is left continuous

NOTE: Similar to discrete vel models, except each x has different velocities

To find weights and abscissas, match first 2N moments:

o N
/ fav="M =) o, /
- k=1

o0

N
vidv= M = Z O Uk,
o k=1

) N
/ Ny = Mon 1 = Y oV

e k=1
m Closure:
A N
Moy =Y oot
k=1
m Using GQ can reformulate this as a root finding problem for an N degree poly
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1D quadrature-based moment-closure

Basic idea [Rodney Fox (ISU) et al]

Quadrature points & weights:
[ stwar = ¥, orgu)
m Weight function satisfies
/M vkw(v)dv: My for k=0,1,23,...

m If we make exact for g(v) = 1, v, v2, ... we arrive at moment-closure eqns

m Can solve these equations by constructing orthogonal polynomials:
(@0 = [ g w(v)dv
m e.g., up to second order:

W(O)(V):17 ‘I’(1)(V)=V—U7
v®(v) = 3ppv® — (6ppu+3pq) v+ (3ppu? — 3p + 3upq)
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1D quadrature-based moment-closure

M* closure (N = 2)

M* closure model:

P pu
pu " puc+p —o
pu+p pu +3pu+q =
pu+3pu+q| , |put+epuP+aug+ S +E|

Hyperbolic structure:

m Eigenvalues (each has algebraic multiplicity 2, geometric multiplicity 1):

2
YO YO T A §+<i)

m Weak hyperbolicity with 2 linearly degenerate waves

m Delta shocks form for generic initial data
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1D quadrature-based moment-closure

Bi-Gaussian ansatz [Chalons, Fox, & Massot, 2010]

(O] _v=m)? W2 _(v-m)?
e 26 4
V2To 210

m Moment-closure equations (pc = p(1 —a)):

f(t,x,v) =

01 + 0o = P, O} + 0oy = pu, D14 + o5 = pUE+0ip,

3 3_ .3 4 4_ 4 2 3p?(02 —1)
Oy + oty = pu” +30pu+q, Ouy + Wpp; = pu” +60pu +4t711+r+7p ;

m Riemann solution:

Density att=0.15 Pressure att=0.15
— 1.5‘_\—-!
14 o 14 :
1.3
12 ey 12
;—\_\_ 11
1 | 1 [E—
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
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4 =1 Moment-realizability condition

Bi-Gaussian distribution [Chalons, Fox, & Massot, 2010]

Theorem (Moment-realizability condition for the bi-Gaussian distribution)

Assume that the primitive variables satisfy the following conditions:

<r, Ifg=0: <r<—

3 2 2 2

3

0<p 0<p PP P 0
pp p p

If g # 0 then 3! o € (0, 1] that satisfies the following cubic polynomial:
P(a) = 2p%0® + (pr —3p?) pa— pg? = 0.
From this oL we can uniquely obtain the quadrature abscissas and weights.

Ifg=0and & <r< % then3l a e (0,1] such that o=/ Z_". The
quadrature abscissas and weights are again unique.

Ifg=0andr= ﬁ, then oo = 0. This case corresponds to a single Gaussian
distribution. In this case we lose uniqueness of the quadrature abscissas and
weights.
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1D quadrature-based moment-closure

Bi-B-spline ansatz [Cheng and R, 2013]

(2v++/0) if —y/o<2v<0
(Vo—2v) ifo<2v<./c

alvaln

f(t,x,v) = @1 B3 (v —p1) + 0B (v —up), B(v) = {
® Moment-closure equations (pc =24p(1 —a)):
11 + 0o = P, O] 4oy = pu, O + Wpp5 = puP +aap,
6 2
o1 + 0pp3 = pu’ +30pu+q, @14 + iz = put +4qu+6opu® + 1+ %(30&2)(&*1)

m Riemann solution:

Density att=0.15 Pressure at t = 0.15
1.5'—\—.
1.4 ° 14 :
13
1.2 _ 1.2
e 11
| g — , L
0 0.25 05 075 1 0 025 05 075 1
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Outline

Mixed Fluid-Kinetic Solver

m Restriction and Prolongation
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' Kinetic model — fluid model

Restriction

Flui d H I
n+l/4 n+1/2

Kinetic: %:« ?K ISK SK I)P(q)

q
Strategy:

m Evolve the kinetic equation from t = t" to t = t" + At

m From kinetic solution create kurtosis interpolant on [t", t” + At]:

(tn+1

_ f) ZK"(E) o 4

(t n M
Tx [t 1] At

Z RO o0)

e.g., K(t,x)

m Solve corrected (restriction) “20-moment” fluid eqn from t = t" to t = t" + At

Correct kinetic soln to match first few moments of fluid soln (prolongation)

J.A. Rossmanith | ISU 39/46
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Fluid model —> klnetlc model

Prolongation

m Att=t""" compute from f(t"T1 x,v):

Mo, M, W, My, i

Compute a reconstruction of this data (using bi-B-spline fluid moment closure)
gn+1 (X? V) = T (Vv MO:' . 5M4)
A (x,v) = (1 xv) — g™ (x,v)
m Att=t"t" compute from fluid model:

M07 M1> M27 M37 My

Compute a reconstruction of this data (using bi-B-spline fluid moment closure)

W (x,v) == F (v; M, ..., M)

Replace g"t'(x,v) by h"t1(x,v):

(™ x,v) = AT (x,v) + A (x,v)

J.A. Rossmanith | ISU 40/46
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Mixed Fluid-Kinetic Solver

m A Numerical Example
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Two-stream instability

Bi-B-spline prolongation

t.z.v) at time ¢ =0.0 t.x.v) at time t =4.5

0.45 0.45
0.40 0.40
0.35 035
0.30 0.30
0.25 0.25
0.20 0.20
-2 0.15 -2 015
4 0.10 _4 0.10
0.05 0.05
- 0.00 0.00
0.45 0.45
0.40 0.40
0.35 035
0.30 0.30
0.25 025
0.20 0.20
0.15 0.15
0.10 0.10
0.05 0.05
0.00 0.00

J.A. Rossmanith | ISU 42/46



nection GEM Problem Momer Multipt = Mixed Solver

Two-stream instability

Bi-B-spline prolongation (red: fluid, blue: kinetic)

Density at t = 45.0 Velocity at t = 45.0

12 0.10

1.1
0.05

1.0
0.00

0.9|
-0.05

0.8|
-0.10,

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Pressure at t = 45.0 Heat Flux at t = 45.0

0.4

4.0
0.2

3.5
0.0

3.0
-0.2

2.5
-0.4

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
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Two-stream instability

Bi-B-spline prolongation

Mixed Solver

1.0le=13 AM, att=45.0
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Outline

B Conclusions & Future Work
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' Conclusions & future work

olver Conclusions

Multi-moment fluid models for GEM challenge

® 5-moment: correct reconnection rate, relies on numerical diffusion

m 10- and 20-moment: qualitatively correct pressure tensor

m 10- and 20-moment: need relaxation terms to get physically correct results

m Want to explore multi-physics (i.e., domain decomposition) approaches
Quadrature-Based Moment-Closure Models

m Moment-closure problem: assume a distribution, moment inversion

® Quadrature-based moment-closure allows for non-zero heat flux

m Quadrature via Dirac delta, Gaussians, B-splines
Mixed fluid/kinetic solvers (multiscale solvers)
m Restriction: Kinetic-to-fluid mapping via temporal interpolation
m Prolongation: Fluid-to-kinetic via reconstruction using moment-closures

m Future work: Problems where kinetic solver is not needed globally
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