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1. Introduction

Neurovascular coupling is the relationship between neaurl activity of a fetus and the

associated changes in cerebral blood flow. Understanding neurovascular coupling is

important in order to help prevent disorders and

2. Background

2.1. Neuron Model

In order to better understand neuron activity in the brain, a model was created. The

interest is not of the underlying principles of neuron activity, but instead the physical

parameters of the neuron, as observed throughout the simulation, specifically, the

mechanics of how sodium, potassium, chlorine, and calcium concentrations in the extra

and intracellular cell membranes are related to the voltage of the neurons. The desired

model realistically simulates the spikes in neuron voltage and chemical concentrations

that are experimentally observed during brain activity. The main application of this

study is to provide insight as to how seizures are formed and progress.

Figure 1: Schematic of excitatory and inhibitory

neurons. [2]

We have independently stud-

ied two different models. One

is a simplistic model of one iso-

lated neuron. [1] The second is

a model of n excitatory neurons

and n inhibitory neurons which

are all coupled [2]. A schematic

of the second situation is shown

in figure 1.

2.2. Circulation Model

A model demonstrated by Beat-

rijs van der Hout-van der Jagt,

et al [3], [4] was replicated. This

model follows the blood flow

through the system of a pregnant

sheep and the fetus. The electri-

cal analog of the system can be

seen in Figure 2. As in a real system, the left ventrical of the mother pumps blood

through the arteries. Some of this blood is then directed towards the uterine circula-

tion while the rest is directed to the systemic circulation of the mother. Oxygen and

nutrients in the blood that has been directed towards the uterine circulation is diffused

across the placental membrane and enters the fetal circulation which follows a similar

path. The fetus is subject to the additional pressure of the uterus, which is regulated
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by a contraction model. The flow in the fetus is significantly symmetrical to that of the

maternal system.

2.3. Data Analysis Model

Figure 2: Electrical analog of blood flood system

in the model. [3]

Fetus is connected with mother body

by umbilical cord. Mother brings

oxygen and other nutrients to fe-

tus via umbilical cord. However,

umbilical cord might be blocked in

the process of labor. In case

of blocking, fetus doesn’t have ad-

equate oxygen or other necessary

elements. Therefore, it might

damage fetal bodily functions es-

pecially brain functions. Mathe-

matically, a linear system of ordi-

nary differential equation which mod-

els micro-environment in fetus can

be built. Some important out-

puts of that model are heart rate

(HR), blood pressure (BP), pres-

sure of oxygen (PO) and pres-

sure of carbon dioxide (PCo2).

Some models also have other out-

puts such as Electroencephalogra-

phy (EEG) and Electrocorticography

(ECoG).

For Qiming Wang’s model, it is mod-

eling HR, BP, PO and PCo2. How-

ever, there might be something miss-

ing is the model. But, we don’t

know what they are. The missing

part might significantly affect out-

puts. Therefore, we manually delayed some parts in the model. Let’s denote the reduced

model as WD and denote the original model as WOD. We want to compare the differ-

ences between outputs of those two models.

Statistically, a feasible way to achieve that goal is to compare the relationship among

HR, BP, PO and PCo2 in each model. I regarded HR as response variable and others

were explanatory variables. The main reason why I did this way was that HR is easiest
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to record in practical. But BP, PO and PCo2 sometimes may not be recorded eas-

ily. Moreover, BP, PO and PCo2 sometimes may not be recorded in equal time space.

Therefore, it was better to set HR as response variable. There was also same situation

of EEG and ECoG. In that model, HR was response variable and EEG and ECoG were

explanatory variables.

3. Model and Methods

3.1. Neuron Model

The single neuron model can be understood as follows: The neuron is inside of a

chemical bath with sodium, potassium, chlorine, and calcium; each one has an intrinsic

ionic current, and the potassium and sodium additionally have an associated pump

to them. The sodium and potassium currents have associated gating variables, n and

h respectively, which regulates the rate of current flow. These gating variable are a

function of the current voltage of the neuron. There is also a separate equation which

models the pump that is being used for the sodium and potassium. It is a function,

naturally, of the concentrations of sodium and potassium. The rate of change of sodium

is completely determined by the pump and its intrinsic current. The potassium, however,

has an additional Glia current and diffusion current. Glia cells remove potassium from

the extracellular space. The glia current is a function of the potassium concentration.

Finally, the potassium also has the potential to diffuse away from the extracellular space.

This diffusion current is again, a function of the concentration of potassium. In total, we

keep track of six dynamic variable: Voltage, sodium, potassium, calcium, and 2 gating

variables n and h. The applicable single neuron equations are as follows:

INa = −gNa[m∞(V )]3h(V − VNa) − gNaL(V − VNa) .

IK = −(gKn
4 +

gAHP [Ca]i
1 + [Ca]i

)(V − VK) − gKL(V − VK) .

ICl = −gClL(V − VCl) .

Ipump = (
ρ

1 + exp((25.0 − [Na]i)/3.0)
)(

1.0

1.0 + exp(5.5 − [K]o)
) .

Iglia =
Gglia

1.0 + exp((18 − [K]o)/2.5)
.

Idiff = ε([K]o − k0,∞) .

C
dV

dt
= INa + IK + ICl .

dq

dt
= φ[αq(V )(1 − q) − βq(V )q], q = n, h .

d[Ca]i
dt

=
−0.002gCa(V − VCa)

1 + exp(−(V + 25)/2.5)
− [Ca]i/80 .
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d[K]o
dt

= −0.33IK − 2βIpump − Iglia − Idiff .

d[Na]i
dt

= 0.33
INa

β
− 3Ipump .

The neuron network model is more complicated. Keep in mind that each neuron

in the network is an individual system, and so we will need an entire set of equations

for each of the n excitatory neurons and n inhibitory neurons. We begin with the same

initial set up: the neurons are all in the same chemical bath as before, and the same

currents and gating variables are in place. There is no explicit chlorine current this time,

and instead there is a leak current which represents all leaks in the neuron, i.e. from the

potassium and sodium pump as well as the entirety of the chlorine pump. There is also

the synaptic current term. This can be understood as follows: each neuron interacts

with every other neuron in the system. The strength of the interaction is determined

by the distance between the two neurons. So, the synaptic interaction between two

adjacent neurons is strong compared to the interaction of two neurons which are far

apart. The interaction between two excitatory neurons is different than between two

inhibitory ones, and both are different than an excitatory-inhibitory interaction. This

synaptic current is also regulated by a synaptic efficacy term s, which is a function of

the voltage of the neuron. Another current term we have is the external current. This is

from the external voltage that is applied locally to a certain portion of the neuron ring

and only for a certain period of time. The final additional current term is a random

term which may at any point add or take away from the neuron voltage with equal

probability. Its also important to note that the calcium concentration of the inhibitory

neurons is always assumed to be zero.

The governing sodium equation is precisely the same as in the single neuron model.

The potassium equation is quite different however. We now have a diffusion of potas-

sium between a given neurons and all of its immediate neighbours. For example, if

we have 10 excitatory neurons and 10 inhibitory ones, than excitatory neuron number

5 will experience diffusion of potassium with excitatory neurons number 4 and 6, and

inhibitory neuron number 5.

In total, each neuron in the network has 8 parameters to keep track of: voltage, sodium,

potassium, calcium, n, h, s and eta. The applicable neuron network equations are as

follows:

I
e/i
Na = −gNa[m

e/i
∞ (V e/i)]3he/i(V e/i − V

e/i
Na ) .

I
e/i
K = −(gK [ne/i]4 +

gAHP [Ca]
e/i
i

1 + [Ca]
e/i
i

)(V e/i − V
e/i
K ) .

I
e/i
L = −gL(V e/i − V

e/i
L ) .
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Iesyn = −
(V e

j − Vee)

N

N∑
k=1

geejks
e
kχ

e
jk −

(V e
j − Vie)

N

N∑
k=1

giejks
i
kχ

i
jk .

I isyn = −
(V i

j − Vei)

N

N∑
k=1

geijks
e
kχ

e
jk −

(V i
j − Vii)

N

N∑
k=1

giijks
i
kχ

i
jk .

Ie/ipump = (
1.25

1 + exp((25.0 − [Na]
e/i
i )/3.0)

)(
1.0

1.0 + exp(8.0 − [K]
e/i
o )

) .

I
e/i
glia =

Gglia

1.0 + exp((18 − [K]
e/i
o )/2.5)

.

I
e/i
diff = ε([K]e/io − k0,∞) .

C
dV e/i

dt
= I

e/i
Na + I

e/i
K + I

e/i
L + Ie/isyn + I

e/i
ext + I

e/i
rand .

τ e/i
dse/i

dt
= φσ(V e/i)(1 − se/i) − se/i .

dηe/i

dt
= γe/i(V e/i − Vb) − γ̃ηe/i .

d[K]
e/i
o

dt
= 0.33I

e/i
K − 2βIe/ipump − I

e/i
diff − I

e/i
glia +

D

∆x2
([K]

e/i
o(+) + [K]

e/i
o(−) + [K]e/io − 3[K]e/io ) .

d[Na]
e/i
i

dt
= 0.33

I
e/i
Na

β
− 3Ie/ipump .

The single neuron model was implemented with relative ease. We simply input

all the equations and parameters into MatLab and use an ODE solver to simulate the

data with appropriate initial conditions. A matrix y is produced where the columns of

y represent the progression of each physical parameter. The only real problems that

arose with this implementation is just basic troubleshooting and physical parameter

adjustments. Once these minor problems were resolved, we were able to get reasonable

spiking patterns.

The network neuron model was more difficult to implement. Originally, we had wanted

to produce a program in which the user could choose which neuron he or she wants to

observe, and that MatLab would run this simulation independently. However, because

the simulation for a specific neuron needs information from adjacent neurons, we need

to run all the simulation for all the neurons simultaneously. What we eventually imple-

mented was a series of 2*n*8 differential equations. The first n are the voltage equations

for the excitatory neurons. The next n are the voltage equations for the inhibitory neu-

rons. The next n are the s equations for the excitatory neurons, and the next n are the

s equations for the inhibitory neurons, and so on.
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It was more difficult to troubleshoot this model. The first problem we encountered

was the emergence of complex model in the output. We realized immediately that

imaginary numbers could only be produced by the logarithm that was in our model.

We therefore double checked all terms involved with the logarithms until we found the

source of this problem. The last problem we discovered was certain values growing too

quickly and too much. Specifically, we noticed that the potassium concentrations were

growing to much greater values than we saw in the single neuron value. After some

thoughtful investigation, we realized that he size scale of one of our coefficients was

incorrect and needed to be much smaller. Once that was fixed, the model was running

seemingly correctly; we had all the neurons experiencing reasonable spiking patterns.

3.2. Circulation Model

There are several components to the circulation model. The first is the circulation itself.

Blood flow in the system is driven by the pressure difference between compartments:

∂q

∂t
=

∆p−Rq

L

Near the heart, an additional parameter is modelled that indicates if the heart valves

are open or closed. They are closed when there is a negative or zero pressure difference

across the valve and open for positive pressure difference. These valves prevent backflow

of blood into the systemic circulation.

Inertance of the blood is modeled in the arteries of both the maternal system and

the fetal system according to:

∆p = L
∂q

∂t

Elsewhere, the following holds:

∆p = Rq

The oxygenation of fetal blood was modeled as shown in Figure 3. The assumed

constant oxygen concentration of the maternal arteries and flow of that blood in the

uterine system controlled the oxygen concentration into the fetal circulation. The oxygen

distribution was determined by considering convective transport in the vessels, diffusion

in the placenta, and metabolic uptake in all compartments as follows:

d(cO · V )

dt
= q(cOin − cO) − Ȯdiff − Ȯmet

As in reality, there is no blood flow between the mother and fetus. Oxygen and nutrients

diffuse across the membrane in the placenta according to:

Ȯdiff = D(pO2,ivs − pO2,um)
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Figure 3: Model of fetal oxygenation flow. [3]

The blood flow in

the fetus is affected by

the uterine pressure as

well. Pressure in the

uterus changes with con-

tractions. The contrac-

tions are modeled so

that they are periodic

with a period of three

minutes one minute

of contraction and then

two minutes of rest-

ing. There is a contin-

uous transition between

regimes.

In order to have a com-

plete system of equa-

tions, and assuming blood to be incompressible, the following holds:

dV

dt
= qin(t) − qout(t)

The circulation model was implemented using the MatLab solver, ode45.

3.3. Data Analysis Model

I applied two non-parametric statistical regression techniques to deal with those data.

One is generalized additive model (GAM) and another one is local polynomial regression

(Loess). The basic idea behind these two methods is to smooth the data and then get

approximate functions.

In statistics, a generalized additive model (GAM) is a generalized linear model in which

the linear predictor depends linearly on unknown smooth functions of some predictor

variables, and interest focuses on inference about these smooth functions The general

form of GAM is described as following,

g(yi) = f1(x1t) + · · · + fn(xnt)

function g is a link function. f1, · · · , fn are smoothing functions.

Local polynomial regression (Loess) is a strongly related non-parametric regression

method that combine multiple regression models in a k-nearest-neighbor-based meta-

model. The general form of Loess is described as following,

yi = h(x1t, . . . , xnt)

h is a local polynomial function.

The main purpose is that we want to test whether the functional effect of explanatory
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variables(BP, PO and PCo2) for response variable (HR) is statistically significant or

not. In plain language, we want to judge if those explanatory variables really affect

response variable.

In our case, the final model is described as following,

generalized additive model,

HR = f1(BP ) + f2(PO) + f3(PCo2) + f4(BP ∗ PO)

+f5(PO ∗ PCo2) + f6(PCo2 ∗BP )

Local Polynomial Regression,

HR = h(BP,PO, PCo2, BP ∗ PO, PO ∗ PCo2, PCo2 ∗BP )

Multiplication terms BP * PO, PO * PCo2 and PCo2 *BP stand for interactive effect.

More precisely, for example, BP * PO stands that BP interacts with PO. In other words,

The effect of BP on HR depends on PO.

Similarly, for the model with EEG and ECoG, the final model is described as following.

HR = f1(EEG) + f2(ECoG)

Similarly, for the model with EEG and ECoG, two final models are described as

following.

HR = f1(EEG) + f2(ECoG) + f3(EEG ∗ ECoG)

HR = h(EEG,ECoG,EEG ∗ ECoG)

Finally, we could use many smoothing method to approximate regression equation above.

4. Results

4.1. Neuron Model

For the single neuron model, we wanted to reproduce the results of the paper we were

studying. The paper produced a few different plots for different time scales and different

parameter values. As seen in Figure 4a and APPENDIX On the short timescale, the

spiking of each variable is rapid and consistent. On the long time scale, the voltage

of the neuron experienced periods of intense spiking and periods of relative rest (figure

4c). By changing only the value of the tendency for potassium to diffuse, epsilon, and

the tendency for glia cells to absorb potassium Gglia value, we can produce spiking in

the same period of time (figures 4c, 4e and 4d). We are also able to produce a spiking

pattern that is qualitatively different than the other patterns (figure 4). One interesting

observation is that when we completely turn off all calcium contribution, we are not

able to produce certain results (figure 4b). We were able to produce all the results of

the paper with our model.
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Figure 4: Results from the paper regarding single neuron

model. [1] Replicated results can be found in the appendix

due to space restrictions.

The network model

had harder to gauge re-

sults. We did not have

any results to compare

our data to, so we had

to use our judgement to

some extent. One strat-

egy we had to gauging

our accuracy was decou-

pling the system; when

we take away all terms

which involve neurons

interacting with one an-

other, what we reduce

the model to is essen-

tially 2n single neuron

simulations. If our de-

coupled model produces

almost identical results

as our single neuron

model, than we will

know that our model

was probably correct.

Once that was estab-

lished, we recoupled the

system again. The re-

sults of the coupled model are similar to the uncoupled model. Unfortunately, in order

to truly the appreciate the difference between the couple and uncoupled model, we need

to run the model for at least 100 seconds. Due to the lack of computational resources, we

were not able to run the model for 100 seconds, even for only n = 3 neurons. Shown in

Figures 5 and 6 are the qualitative behaviours of the 1st and 3rd neurons, respectively,

in a model of 5 neurons using each of 100 ms, 1000 ms, and 10000 ms for the model. By

looking at the 100ms model, we can see that the neurons which are closer to the middle

(around neuron number 3) experience more spiking than neurons near the edge. This

can be explained by noting that the external current applied to the model is a Gaussian

centred at the middle neuron. So, the middle neurons experience more of the external

current and so experience greater spiking.

Through our model, we were able to observe certain activities of neurons under

different conditions. We saw spiking patterns for both the single neuron and the neurons

in a network. In the future, this model could be used to observe brain activity under

certain conditions, and perhaps be able to find out causes of seizures.
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Figure 5: Top: 100 ms model of the 1st

neuron in a 5 neuron model. Center:

1000 ms model of the 1st neuron in a

5 neuron model. Bottom: 10000 ms

model of the 1st neuron in a 5 neuron

model

Figure 6: Top: 100 ms model of the 3rd

neuron in a 5 neuron model. Center:

1000 ms model of the 3rd neuron in a

5 neuron model. Bottom: 10000 ms

model of the 3rd neuron in a 5 neuron

model
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4.2. Circulation Model

As shown in Figure 7, the contraction results were replicated as in the paper. Figure

7a shows the relationship between time and the uterine pressure. Figure 7b shows the

relationship between time and the resistance of the cerebral flow in the fetal brain.

Figure 7: Left (a): Uterine pressure as a function of time. Right (b): Fetal cerebral

resistance as a function of time.

Though the contraction model can be checked independently, the rest of the model

relies on other parameters. Though volumes and oxygen concentrations are reasonable,

they cannot be confirmed accurate due to other problems within the model. The pressure

across the heart is unreasonable in magnitude, possibly caused by the sarcomeres getting

too long. This unreasonable pressure continues to grow exponentially until MatLab

throws an exception when arithmetic is attempted on a value at infinity.

4.3. Data Analysis

Since we used non-parametric regression techniques, we can’t write the explicit equation.

But we can do hypothesis testing of each functional effect and prediction. For Qiming’s

model, I built GAM for simulation data. Recall, we had two data set WOD and WD.

For WOD, firstly I did model selection test. Then, there was strong evidence (p-value

< 0.001) that we should include interaction terms in the model. Furthermore, all

six functional effects were statistically significant (p-value < 0.0001). It means BP,

PCo2 and PO did affect HR. Moreover, we can’t separately consider BP, PCo2 or PO

themselves because there were three interaction terms. Among BP PCo2 and PO, the

effect of each of them on HR always depends on the other two. For WD, if we just

considered three main effect BP, PCo2 and PO, BP was not statistically significant (p-

value = 0.09). However, if we included three interaction terms, all six functional effects

were significant. This was a interesting find. As I mentioned before, since BP PCo2 and

PO may not be record all the time, I ran regression on two cases. One was BP PCo2

and PO was observed at equal space time point, another one was that BP PCo2 and PO

was observed at sparse time point. I found consistent patterns in both cases. Overall,

in the model with delay, something happened so that BP itself have no significant effect
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on HR.

For the model with EEG and ECoG, all three functional effects were statistically

significant (p-value < 0.01). Actually, it is very common sense that EEG and ECoG

interact each other and have influences on HR.

To be honest, the way I dealt with these data set should be refined. For example, I also

could do time series regression or functional data analysis. But because of limitation

of data and time , those analysis cannot be done shortly. Therefore, I could use these

techniques to deal with our data more properly in the future. Furthermore, I haven’t

finished analysis for Martin’s experimental data. Since the data set is big, it was not

easy to handle and analyze them. If I get opportunities after that, I’ll try it again.

Appendix

Figure 8: Replicated results of Figure 4a.
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Figure 9: Replicated results of Figure 4b. ε is multiplied by 0.2. Gglia is multiplied by

0.4.

Figure 10: Replicated results of Figure 4c.
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Figure 11: Replicated results of Figure 4d. ε is multiplied by 2.0.

Figure 12: Replicated results of Figure 4e. ε is multiplied by 2.0. Gglia is multiplied by

1.75.
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Figure 13: Replicated results of Figure 4f. ε is multiplied by 3. Gglia is multiplied by

1.75.
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